
Part I
A Yerk Tutorial

Table of Contents

Lesson 1. How to Start Up Yerk. The Yerk Prompt.

Lesson 2. The Parameter Stack. Arithmetic and the Stack.

Lesson 3. Stack Notation. Mastering Postfix Notation.

Lesson 4. Yerk's Object Orientation. Fundamental Concepts.

Lesson 5. Mapping Yerk Class-Object Relationships. Defining a Class.

Lesson 6. Objects and Their Messages. Summary.

Lesson 7. Modifying a Yerk Program.

Lesson 8. Predefined Classes -- An Introduction. Data Structure Classes. Other Predefined
Classes.

Lesson 9. Defining New Yerk Words. Named Input Parameters. Local Variables.

Lesson 10. Additional Math. Displaying Text. Explicit Stack Manipulation.

Lesson 11. How Yerk Makes Decisions. Two Alternatives. Truths, Falsehoods, and
Comparisons. Nested Decisions. The CASE Decision.

Lesson 12. Logical Operators. Loops. Definite Loops. Nested Loops. Indefinite Loops.

Lesson 13. Yerk's Fixed-Point Arithmetic. Decimal, Hex, and Binary Arithmetic. Signed and
Unsigned Numbers. One Last Set of Numbers -- ASCII.

Lesson 14. Global Constants and Values. How Yerk Remembers Definitions.

Lesson 15. Building a Sine Table. What Happens on the Stack.

Lesson 16. Building a Turtle Graphics Program. Experimenting With Turtle.

Lesson 17. Create a Mini-Logo Language.

Lesson 18. Inside the Yerk Demo. Macintosh Controls. GrDemo Controls. Declaring Some
Constants.

Lesson 19. Windows. The grDemo Window. The Demo Window. Scroll Bar Actions. Menus.
Demo Menus. Running the Program. Where To Go From Here.

Lesson 1

How to Start Up Yerk
To start Yerk, turn on your Macintosh and insert into the internal disk drive slot a working disk
containing the the files detailed in the Introduction (if you have an external drive you can put a
system disk in the internal drive, and your working Yerk disk in the external drive). If you have a
hard disk, copy all of the files over to the hard disk. If you have not made a working disk or copied
the files to your hard disk, do so now. Soon after "Welcome to Macintosh" disappears from the
screen, the Macintosh desktop appears on the screen with the Yerk disk window open. If the window
is not open, double-click the Yerk disk icon. Double-click the icon labeled Yerk.com. After a few
seconds, the Yerk window will appear on the screen, as in Figure 1-1.

Figure 1-1

Across the top of the screen are five menu titles. You won't be using all of the menus right away, but

acquaint yourself now with the contents of each menu.

The Apple menu contains a selection to read the copyright and release information about Yerk as
well as several desk accessories. An editor should be present as a desk accessory in the

Apple menu. The File menu is much like the File menu in MacWrite and MacPaint, but with a
special selection (Load), which you'll use later for loading text files containing your program code.

The remaining menus, Utilities and Yerk, contain many operations that will be useful in the writing
and debugging of Yerk programs. These operations are detailed in Part II of this manual.

The Yerk Prompt
The starting Yerk window displays the following information:

Macintosh Yerk Version 3.64
Bytes Available: XXXXX
0->_

The actual version number of Yerk you will be using may be different -- the version number changes
with each update to Yerk. The number of bytes available indicates how much memory is currently
available to you for the addition of your program. The values are different depending on how much
memory you machine has. If you are using multifinder or System 7, you may modify this amount of
memory by selecting the kernel 'yerk' and selecting the 'get info' menu item. Follow the instructions
in your Mac manual.

The last line of this display is the Yerk prompt. It consists of the number zero and what looks to be
an arrow (the arrow is fashioned out of a hyphen and a greater-than symbol). Press the Return key a
couple times. Notice that at each press of the key the prompt moves down one line and appears at
the left margin of the screen. Bear in mind for later reference that no matter where along a line the
prompt may appear (some graphics commands may end with the prompt somewhere in the middle of
the screen), a press of the Return key will bring the Yerk prompt to the left margin of the next line on
the screen -- a position that usually makes it much easier to see. If the prompt reaches the bottom of
the screen, the prompt line will stay at the bottom of the screen, and all entries above it scroll toward
the top of the screen. Pressing the Return key without typing anything else at the prompt will not
harm your program in any way.

We said earlier that Yerk behaves like a dictionary. In other words, when you opened Yerk.com just
now, the Mac automatically loaded the basic Yerk vocabulary into its memory. Each time you type a
word -- any group of text characters -- and press Return, Yerk searches through its dictionary for that
word and carries out whatever instructions are associated with it. If the word you type is not in the
current Yerk dictionary, a message appears on the screen to advise you that Yerk could not find the
word. Let's try it.

Type someone's name and press Return:

0->michael <RETURN>
MICHAEL? not found

0->_

Notice a few things that happened here. First of all, Yerk beeped to give you an extra warning that
something is not quite right. As you do more sophisticated programming with Yerk, you'll discover
that the beep, rather than being an annoyance, is a welcome signal to alert you to something amiss in
your program.

Second, the message coming back from Yerk questioned the name you typed in. Yerk advises you
that the name was not found in the dictionary -- in that split second, Yerk compared the name against
nearly 1000 words in the Yerk dictionary.

Third, although you typed the name in lower case letters, Yerk came back to you saying that the
name it was checking was in all capital letters. That's because Yerk makes no distinction between
upper and lower case letters when it comes to words in its dictionary. Internally, everything is
converted to upper case.

And finally, after all the beeps and messages, Yerk restored the 0-> prompt, patiently awaiting the
next entry you type in.

Both the zero and the hyphen in the Yerk prompt are significant. While the greater-than symbol
never changes, the zero and the hyphen do.

The hyphen indicates which numeric base the computer is in. We'll have much more to say about
number bases later, but for now, you should be aware that this part of the Yerk prompt can display
one of three characters, depending on the numeric base you wish to work in:

Prompt Base
-> Decimal (Base 10)
$> Hexadecimal (Base 16)
?> Other

Watch what happens when you change the base from decimal (the base that Yerk starts in) to
hexadecimal (hex for short). Type "hex" and press Return:

0->hex <RETURN>

0$>_

Notice that the dollar sign replaced the hyphen. To change back to decimal, simply type "decimal"
and press Return:

0$>decimal <RETURN>

0->_

The number before the arrow is actually a counter. It counts how many things are in a section of
memory called the parameter stack. When you start Yerk, there is nothing on the stack -- hence the
zero at the first prompt. You'll understand where the stack gets its name after we put some numbers
in it.

End of lesson 1

Lesson 2

The Parameter Stack
Type the number 7 and press Return:

0->7 <RETURN>
1->_

Notice that after you press Return, the prompt now shows a one instead of a zero. Type a 3, a space,
a 1, and press Return:

1->3 1 <RETURN>
3->_

The parameter stack counter now reads three, because the 7, 3, and 1 are on the stack. The space
you typed between the 3 and 1 told Yerk that you intended those two digits to be two different
numbers. If you had typed 31 instead, then the number 31 would have been put on the stack, and the
counter would read two. Understanding the way these numbers are stored on the stack is of utmost
importance at this stage of learning Yerk.

The best way to demonstrate how a stack works is to summon the often-cited analogy of the
springloaded pile of dishes you encounter in a cafeteria line. If you place one plate on the spring, it
is obviously the first one that will come off the top. But if you place a second plate on top of the
first, the weight of the second plate pushes the first one down one step, and the second plate is the
one that will be picked up by the next customer in line. In other words, the last one put on the stack
is the first one to be taken off the stack.

Let's see how this principle applies to the Yerk parameter stack, which you've just loaded with three
numbers. If the rule holds, the number 7, which you entered first, should be at the bottom of the

stack, while the number 1, which is the most recent entry, should be at the top of the stack.

To see if these numbers are in that order, take the first available number off the top of the stack. To
do this, use the Yerk word that tells the Mac to take the number from the stack and display it on the
screen. That word is a simple period (.), called "dot." Type this now.

3->. <RETURN>
1 2->_

What happened here was that the dot (print to screen) command pulled the 1 off the top of the stack
and displayed it on the screen. The Yerk prompt (2->) now indicates that two numbers are still on
the stack. In other words, whenever you perform a dot operation on a number in the stack, the
number is removed from the stack and displayed on the screen. To get the remaining numbers off the
stack, you need to issue two more dot commands. Just as you could put two different numbers onto
the stack by typing a space between them on one line, so you can issue multiple commands on one
line, provided you put a space between each command. If you fail to put the required space there,
Yerk thinks that the string of characters is a single Yerk word -- perhaps a word that Yerk cannot find
in its dictionary.

To bring the Yerk prompt to the left margin, where it will be less confusing, simply press Return
once. Now type two periods, with a space in between, and press Return:

2->. . <RETURN>
3 7 0->_

Yerk has now printed the two remaining numbers in the order in which they came off the stack.
Remember that the 7 was at the bottom of the stack; it was therefore the last number off the stack,
and was displayed on the screen as the final item before the Yerk prompt reappeared. Multiple dot
commands, as you see, leave a trail of numbers off the top of the stack from left to right across the
screen. And notice, too, that nothing remains in the stack when the last dot command has been
executed.

Yerk also has a word, .s (dot s), that displays a list of all numbers on the stack without removing
them. To see how it works, place the same three numbers on the stack (don't forget the spaces):

0->7 3 1 <RETURN>
3->_

And type .s, your screen will look similar to this:

3->.s <RETURN>
Parameter Stack:

1 $ 1
3 $ 3
7 $ 7

Return Stack:
16220 $ 3F5C
16678 $ 4126

Methods Stack: (--Empty Stack--)
3->_

The first grouping lists the contents of the parameter stack (ignore the Return and Methods stacks for
now). Importantly, the values are listed such that the number on the top of the stack is shown at the

top of the list to give you a better visual portrayal of the stack's contents. The numbers to the left of
the dollar sign are the decimal values, while the numbers to the right are the hexadecimal values.
The dollar sign in this list is the same hexadecimal indicator as is used for the hex Yerk prompt. In
this case, it happens that the Parameter Stack numbers in both bases are the same. Note, too, that the
Yerk prompt at the end shows that the three numbers are still on the stack. The regular dot command
displays and removes them while .s simply takes a snapshot of them.

Experiment with the operation of the stack by putting numbers on the stack, viewing them with the .s
operation, and taking them off by printing them to the screen, either one at a time or in a series. As
an added shortcut, you can use the CR command, which is short for "carriage return," after a dot
command. If you type a "CR" as a command after one or more dot commands (remember to type a
space between the last period and the CR), the Yerk prompt returns to the left margin of the next line.
For example:

0->1 10 100 <RETURN>
3->. . . CR <RETURN>
100 10 1
0->_

If you accidentally issue one more dot command than you have entries on the stack, Yerk will send
you a message (along with the alert beep) that the stack is empty. Try it. No harm will come to Yerk
or your Mac.

The parameter stack gets its name because a good many operations in Yerk require that one or more
values be present on the stack before the operation can be performed. These values, in computer
jargon, are called parameters, and they are said to be passed, or handed to, an operation. Actually,
the operation looks to the stack for the number(s) it needs, and pulls them off.

You saw a glimpse in the last section of how parameters work, when the parameter stack held values
that were to be printed to the screen. The parameter stack, in other words, is a kind of holding box
for values that many operations rely on. This concept will become clearer as we now discuss how
Yerk performs arithmetic.

Arithmetic and the Stack
If you've ever used a Hewlett-Packard calculator, you are already familiar with keying in two values
and then pressing the key that bears the symbol of the desired operation, such as + for addition or *
for multiplication. You're actually utilizing a stack-type computer when you do this.

For those who have never touched an HP machine, the steps to add 2 and 7 go like this. First press
the 2 key. The 2 is placed on the top of the stack. Then press the Enter key. This pushes the 2 one
cell deeper into the HP calculator's stack, a place in the calculator's memory where values are
temporarily held until they are needed for an operation. Then press the 7 key, which places the 7 on
the top of the stack. Finally, press the + key, which reads each value from the stack (first the 7, then
the 2) and adds them. The answer, 9, appears both in the display and on the top of the stack, ready
for further operations, if desired.

Yerk works very much the same way.

The step-by-step approach to add two numbers would be to put each number on the stack one at a

time, and then press the + key (and Return) as follows:

0->7 <RETURN>
1->2 <RETURN>
2->+ <RETURN>
1->. <RETURN>

9 0->cr <RETURN>
0->

Let's follow what happened here. You should already understand how the stack counter increments
each time you type a number and press Return. In the third line, you type the operation, the + sign
for addition. When you press Return, the computer calculates the sum for you. Yerk stores the sum
on the stack -- hence the stack counter shows one value on the stack. Note, too, that the original
numbers were taken off the stack by the addition operation. For a split instant, there was nothing on
the stack, as the two numbers were being added inside the computer. To display the contents of the
stack, and the result of your addition, you must issue the dot command. Sure enough, the answer, 9,
was on the stack.

Yerk lets you perform all these manipulations in a simpler form -- as a single line of instructions,
with at least one space between each element. Here's how it looks:

0->7 2 + . cr <RETURN>
9
0->

The line of instructions contains the same commands as the step-by-step method, but is much easier
to type in. The only thing you miss along the way is a step-by-step readout of the stack counter. But
after all, it's the answer that should be important, not the momentary contents of the stack.

End of lesson 2

Lesson 3

Stack Notation
Before we go further, you should become acquainted with a special notation that tells someone who's
reading your program listing what's happening on the stack before and after a command. The format
is:

(before -- after)

The arrangement of values on the stack is shown both before and after the operation (note the space
between the opening parenthesis and the start of the description). The actual operation is implied by
the double-hyphen. Therefore, in an addition operation -- just the + operation, not the extra stuff to
display it and move the Yerk prompt -- you have two numbers on the stack before the operation, and
you end up with a single number, the sum of those numbers, on the stack after the operation. That is,
you start with n1 and n2 on the stack and end with the sum on the stack. The stack notation looks
like this:

(n1 n2 -- sum)

This, therefore, is the description for the addition operation.

For the dot command, the description is:

(n --)

because this command takes the topmost value from the stack and displays it on the screen. The
value is removed from the stack in the process, leaving no trace of it after the operation.

In the CR command, there is nothing happening to values in the stack. It simply moves the prompt
to the left margin of the next line. Because no stack operations are involved, the CR commands
notation, then, is:

(--)

The definition of every Yerk word you define in a program should be accompanied by its stack
notation. Thumb through the Glossary in Part IV of this manual to see how we have noted the stack
actions of all the words in the Yerk dictionary. While the notation will at first help you learn how
Yerk words work, it will also help you later when you start writing programs in an Editor. The
words and numbers in parentheses (with at least one space after the opening parenthesis) are not
compiled into the program, so they won't add one byte to the size of your final program. The
notations are there to aid you in tracing your program if you run into a snafu during program

development. All in all, the stack notation is a handy shortcut to documenting your programs.

Note: Since anything in parentheses (i.e., starting with an open parenthesis followed by one or more
spaces) is ignored by Yerk, you don't have to type stack notation for words you define at the Yerk
prompt. Stack notation is strictly an aid for reading source code. In this tutorial, we often show the
stack notation for words you define. The notation is presented to help you

better understand the definition and show you how your definitions should look once you begin
writing your own programs in an editor.

Here are Yerk stack descriptions of the four basic arithmetic operations:

+ (n1 n2 -- sum) Adds n1+n2 and leaves the sum on the stack.

- (n1 n2 -- diff) Subtracts n1-n2 and leaves the difference on the stack.

* (n1 n2 -- prod) Multiplies n1*n2 and leaves the product on the stack.

/ (n1 n2 -- quot) Divides n1/n2 and leaves the quotient on the stack.

To newcomers, the stack order -- the way in which numbers come out in the reverse order -- may be
confusing when it comes to subtraction and division, because in those operations, the order of the
numbers is critical. If you want to subtract 4 from 10, you want to make sure that those numbers
come out of the stack in the correct order for the subtraction operation to work on them. Fortunately,
Yerk saves you from performing all kinds of mental gymnastics in the process.

In the kind of arithmetic notation you learned in school, you write the problem like this:

10 - 4

and get the desired answer, 6. In Yerk arithmetic, the order of the numbers going on the stack is the
same. All you do is move the operation sign to the right. The problem becomes:

10 4 -

The same goes for division. The formula for dividing 200 by 25 changes from

200 / 25 to 200 25 /

The four basic arithmetic operations are usable only on integers, that is, whole numbers like -2, 0, 3,
-453, and 1002. Numbers with digits to the right of the decimal don't count. Don't worry, however,
because Yerk has plenty of ways to handle all kinds of numbers, as you'll see later on.

Experiment using the four simple arithmetic operations. Place one, two, three, and four integers (or
more if you like) in the stack to understand how the operations make use of the numbers in the stack.
Try them out now, and pay special attention to answers to division problems.

Everything should have worked well, except when you divided numbers that were not even
multiples of each other. For example, if you divide 10 by 3, the Yerk answer is 3.

0->10 3 / . CR <RETURN>
3

0->_

When you use the divide operation (/) in Yerk, the remainder is lost forever. But Yerk has two other
operations that take care of the remainder for you.

/MOD (n1 n2 -- rem quot)
 Divides n1 by n2 and then places the quotient and remainder on the stack.

MOD (n1 n2 -- rem)
 Divides n1 by n2 and then places only the remainder on the stack.

Try out the 10-divided-by-3 example again, but this time using the /MOD operation instead of
straight division (Remember! Yerk does not distinguish between upper and lower case).

0->10 3 /mod . . cr <RETURN>
3 1
0->

Notice now that both the quotient (3) and remainder (1) were returned to the stack (and subsequently
printed out by two dot commands). Notice also the order of the two answers as they came out of the
stack and how the order compares with the order of the /MOD stack notation above. The rightmost
value in the stack definition, the quotient, was on the top of the stack and was therefore the first one
to be printed out on the display.

Mastering Postfix Notation
If you're not particularly well versed in this reverse notation, called postfix notation, then it is
important to recognize that complex math formulas need to be analyzed before they can be entered
into YERK's postfix, integer arithmetic environment. For example, you may find yourself
confronted with having to include the following formula in a Yerk program:

1.25 * 12 * 50
 10

If so, then YERK's integer arithmetic might seem like a stumbling block, and its postfix notation
may seem worthless. But call upon simple algebra to convert everything to integers, and break up
the complex formula into the same steps you would use to solve it with a pencil and paper. The Yerk
equivalent of this formula is:

5 12 50 * * 40 /

It's worth following what happens to the stack during a complex formula like this. First of all, to
make the 1.25 an integer, multiply it and the denominator by four. Then put all three numbers to be
multiplied into the stack. The first multiplication operation multiplies the topmost two numbers (50
times 12) leaving the result (600) on the stack. That leaves 600 on the top of the stack, and 5 below
it. The second multiplication operation multiplies the two numbers remaining on the stack (600
times 5) and leaves the result (3000) on the stack. This result is the dividend (numerator) of the
division about to take place. Now it's time to put the divisor (40) on top of the stack. Then the final
operation, the division, divides the two numbers in the stack.

Don't be discouraged by all this concern over the stack. You'll learn in a later lesson that Yerk

provides you with two powerful tools -- named input parameters and local variables -- that let you
substitute readily identifiable names for the values on the stack and use them at will. The stack will
become almost invisible to you. It is important, however, to understand the stack fundamentals just
the same.

End of lesson 3

Lesson 4

Yerk's Object Orientation
Armed with a basic knowledge of Yerk's stack, you're now ready for an introduction to the
language's real power: its object orientation.

If you have experience programming in a procedural language like BASIC and Pascal, Yerk's object
orientation may present a challenge at first because it requires an entirely different way of thinking
about a program and its execution. Actually, if you have not programmed a computer before, you
may find Yerk's object orientation easier to understand the first time through than those who have
programmed in other languages.

The next several lessons discuss the concepts of an object oriented language. We will gradually
apply the general concepts to Yerk programs in particular. If you are new to object oriented
programming, have patience with these lessons. Read them carefully from beginning to end.
Because some parts of Yerk are best described in terms of other parts, which may not yet be defined,
you may get more from these lessons by reading them a second time.

Fundamental Concepts
The best place to start is to introduce you to the object-oriented components used in Yerk. The
primary ones to concern yourself with at this point are:

CLASS
METHOD
OBJECT
MESSAGE
SELECTOR

To help you visualize the "big picture" of an object oriented system and what the relationships are
among all the parts, we'll use an extensive metaphor.

Let's say you want to hire an accountant to prepare your income tax return. As a class of
professionals, all accountants have a certain basic knowledge about accounting and manipulating
figures. It is their fundamental job to adhere to generally accepted accounting principles when
working on the financial records of a client. The methods they all use include calculating figures,
cross-footing entries, checking calculations a second time, placing parentheses around negative
numbers in a ledger, and so on.

But within that universe of all accountants, there are specialists. Some devote themselves to
corporate tax work, others to accounting for self-employed professionals, such as doctors. No matter
what the specialty, each shares the same fundamental knowledge of accounting as their colleagues in

other specialties. That is, by virtue of being related to the class of accountants in general, they
inherit many of the characteristics of all accountants. Most of their methods may even be the same,
such as double-checking figures, using parentheses, and the like.

But some of their methods may be different. For example, one kind of accountant may specialize in
handling financial records for corporations whose annual sales are in excess of $5 million. Another
subgroup may do all kinds of accounting work, but its methods involve calculating the final tax form
on a computer instead of calculating and writing entries by hand.

In the case of each of these subgroups, their predominant methods are the same, but with minor
variations in certain methods. Therefore, while each subgroup -- subclass -- of specialty accountants
is a class unto itself, each retains many ties to the larger class of all accountants.

A yet smaller segment of a subclass of accountants, however, can have its own special methods. For
example, there could be a small subclass (actually a subclass of a subclass) of computerized
accountants who bring a portable computer along and perform the work only at the client's place of
business. But even this sub-subclass can trace its methods back through all levels of the class
hierarchy, which might look like the one in Figure 1-2.

Figure 1-2

So far, we've been talking only about classes of accountants, not the actual people who do the work.
The accountant you select to do your taxes, say his name is John, would fall into one of the
subclasses that best meets your particular tax needs. For the sake of this example, let's say that John
is a member of the class of accountants that works with family tax planning and tax return
preparation. In other words, John is an "instance", or an actual, physical example -- an object -- of
the class of family tax accountants. When you summon John to do your taxes, he automatically
brings with him the ability to perform all the accounting and tax preparation methods that belong to
the specialty subclass he belongs to, as well as all the methods he inherits by belonging to a
hierarchy of accountant classes. He may not have to summon absolutely every method for your tax
job, but they're in his background just the same (see Figure 1-3).

Figure 1-3

To get John going on your tax return, you give him the appropriate instructions, including all the
figures he needs and the final go ahead. In other words, you give him the message, "prepare the tax
return based on my figures."

When John receives this message, he knows that the figures you provide are the parameters to be
passed to the methods he will be using to calculate your taxes. He also knows, according to the
methods in his background, that "prepare the tax return" means he should do certain things, like
organize the figures, obtain copies of each tax form necessary, and so on. The "prepare the tax
return" part of the message is a selector in that it tells John what method -- of the many methods in
his background -- to proceed with first. Even within that very first method he performs, some of the
individual steps, such as organizing the figures, may be inherited from the superclass of all
accountants. One or more of those steps, however, may be unique to his subclass of family tax

preparers.

Now, let's say that at the office you are responsible for hiring an accountant to do the company tax
return. Because John is a specialist in family tax planning, you wouldn't want to select him. Instead,
you hire Marvin, because he comes from a class of corporate tax accountants.

To Marvin, you give almost the same message: "prepare the tax return based on the corporate
figures." Marvin receives the same message as John, but because the methods in Marvin's class are
not identical to John's, a different process takes place in the preparation of the return. Some of
Marvin's steps may be the same as John's, because they share the same steps with all accountants,
but others will be unique to Marvin's subclass. And the corporate figures you give Marvin, even
though many will have the same names as the personal figures (income, medical expenses, tax
credits, interest deductions), they will in no way be mixed between returns. Only your family's
figures will be in John's return; only the corporate figures will be in Marvin's. Despite John's and
Marvin's common heritage of accounting methods, they work completely independently of each
other.

The same would be true if you hired a colleague of John's class to prepare your mother's tax return.
If his name is Percival, you can give Percival the same message and your mother's figures, and there
would be no interference among the three returns you have in the works.

If this accountant example were a true object oriented system, the class of all accountants would,
itself, be based on another, all-encompassing superclass -- something like "all living beings." In
other words, there must be a primeval class from which all classes are derived, and all the primeval
methods apply down the line, as long as they haven't been modified by a subclass. Therefore, even
though John doesn't think about it, he breathes, his heart beats regularly, he seeks nutrition
periodically, and so on. If you send the message, "John, hold your breath for 15 seconds," the
method for breathing would not be found in either of the accountant classes to which John belongs,
but rather in the primeval class of living beings. It's possible, nonetheless, for John to reach back
through the hierarchy of classes to that primeval class and make a change to the method that controls
his breathing.

Classes and subclasses are defined by the methods that dictate how an object is to behave. A
subclass inherits all the methods of its superclass, and adds to or modifies the superclass' list of
methods, if necessary. An object is a singular instance of a class or subclass. An object is capable of
performing all operations specified by methods in its class and its superclass.

For an object to do any work, it requires that a message be sent to it. The message must contain a
selector, which the object matches with one of its possible methods. Any data (parameters) passed to
the object inside the message remain the private property of that object.

In Figure 1-4, when we send the message, "John, prepare tax return with my figures," John matches
the selector "prepare tax return" with the methods in Class Family Accountants. This method is, in
turn, defined by a method from its own class (e.g., Personal Consultation) and by methods that the
subclass inherits from its superclass (e.g., Verify Receipts, Doublecheck Figures, and Fill Out Form
1040), as shown in Figure 1-4.

Figure 1-4

When you send the same selector to Percival, but with your mother's figures, Percival follows the
same procedures as John, but never see's your figures, which John has to himself (see Figure 1-5).

Figure 1-5

End of lesson 4

Lesson 5

Mapping Class-Object Relationships in Yerk
An object oriented language like Yerk builds programs around the same kinds of relationships as
portrayed in the accountant metaphor. Class definitions play a central role in the structure of a
program. As such, the most important early step in planning a Yerk program is to visualize what the
main objects -- the actors -- in your program will be doing. Because the Macintosh is capable of
recreating on-screen metaphors for so many different real-world objects -- a bank book, an artist's
canvas, a calendar -- it is best to devise classes of Yerk objects that bear a behavioral resemblance to
the real-world items. Once you've determined what the program's classes will be, it's time to start
writing the program by defining those classes with methods. Then create objects of those classes.
Finally, write the messages to those objects that set the program in motion.

Let's take the first steps in applying Class-Object relationships to a Yerk program by defining a class
that is capable of drawing rectangle objects on the screen. At the same time, you'll also be
introduced to the way Yerk programs really look. Pay particular attention to the physical structure of
program listings -- indentions, spacings, capitalizations, and the like. While Yerk is pretty loose
about how you make your programs look, the ways prescribed hereafter will help you read printouts
of your code for debugging and enhancement. Also consult chapters 3, 5, and 6 in Part II, for in-
depth discussions of this and related topics.

Defining a Class
As you may have noticed in the accountant class metaphor, each class was defined by what amounts
to a series of behavioral rules or procedures that are to be followed whenever an object of that class
is called into action. Defining a class, then, entails establishing those rules and procedures: the
methods.

Most classes also have information -- data -- associated with an object of the class. For example, the
class of Family Accountants can dictate that every accountant of its class should be paid for his
work. Every family accountant (John and Percival, for instance) carries with him a figure for his
hourly rate. The class definition merely states, "Thou shalt have an hourly rate." When the objects
are created, the rate is plugged into that variable. Importantly, John and Percival can have entirely
different hourly rates, because they hoard their own data to the exclusion of other objects in the same
class. One of their methods would retrieve the rate, multiply it by the number of hours spent on your
taxes, and send you the bill.

Let's see what it's like to build a Yerk class called Rect, which will define all the procedures for
creating rectangle objects.

In the Macintosh environment, a rectangle is defined by two points on the screen: the locations of the
top left and bottom right corners of the rectangle. In other words, for every instance of a rectangle

on the screen, an object of class Rect will need numbers to fill in these two variables. These
variables, then, are called instance variables (ivars, for short). They are the holding places in an
object's definition for the requisite data -- the two points -- required before a rectangle can be drawn.

To see the source file containing class Rect, you may use your editor to show the file QD in the
System Sources folder; or, you may use Yerk's on-line documenation feature...just enable it by typing

0->+docs \ turns on documentation feature
0->see rect

A window will appear behind the fwind...you may want to move and resize the fwind if you are
going to use the documentation feaure. It contains the QD source scrolled to the beginning of the rect
class definition. This window will scroll, but is not yet anything like an editor window. Just use it to
quickly see the original source of the definition. You may also use Yerk's decompiler...type:

0->de' rect

To learn more about these two features, see Part II, chapter 6 on the decompiler.

Returning to the Rect example, the class definition up to this point looks like this:

:CLASS Rect <Super Object

 Point TopL
 Point BotR

Notice several things. First of all, the beginning of a class definition is :CLASS (pronounced "colon
class"), with no space between the colon and the word "CLASS." Also, the word "CLASS" is all
capitals. While not required, this capitalization will help you find all the classes in a program listing.
There are two spaces between :CLASS and the name of the class -- only one is required, but two
helps the beginning of the class definition stand out in a listing.

On the same line as the name of the class is a reference to the superclass from which the class
Rectangle is derived. Although in this example the superclass name is Object, this should not be
confused with Yerk objects. Class Object is a special class that defines the behavior appropriate to
all Yerk objects. As such, all classes in Yerk can trace their inheritance to Class Object. By its
inheritance, then, Class Rect has at its disposal all the methods defined in Class Object. If you are
interested, you could check the source code listing for Class Object (located on the Yerk disk as the
source file labeled Object) to see what methods are defined in Class Object.

The instance variables tell Yerk to reserve memory space in the data area of any object created from
this class. The amount of space to be reserved is determined by the characteristics of the instance
variables -- which are, themselves, defined by other classes. Here, the instance variables (ivars) are
named TopL[eft] and BotR[ight], both belonging to the Class Point. It would not be possible to
create ivars TopL and BotR in Class Rect if Class Point had not been previously defined.
Fortunately, Class Point is one of Yerk's many predefined classes.

(For procedural language buffs, a key to understanding the object orientation of Yerk is that as you
follow the threads through the dictionary in the next few steps, you are not watching straight

execution steps. Rather, you are building a framework that will reside in memory as a kind of
potential energy that is released only when a message is sent sometime later in the program.)

To understand what the rules and procedures are for the Point objects (TopL and BotR) created
inside Class Rectangle, you can look up the Yerk source code for the Class Point (located in the qd
source file on the Toolbox disk). The class definition looks like this:

:CLASS Point <Super Object
 INT Y (horizontal coordinate)
 INT X (vertical coordinate)

 (x y --)
 :M PUT: Put: Y Put: X ;M (store points)
 :
 :

;CLASS

Right away, you see that this class, itself, uses two more ivars, X and Y of Class Int (Integer). They
specify the data area inside any object of Class Point. In other words, any object created from Class
Point will need two integers to fill the cells reserved for data. Class Point was designed in this way
so that two values, representing a coordinate point, would be conveniently coupled together
whenever a Point object was created.

Notice, too, that we've started adding plain English remarks about the code as a way of documenting
the program. Remarks can be placed inside parentheses (with at least one space separating the
parentheses from the comment) or preceded by a backslash and a space.

We'll come back to the rest of the statements in this Class Point in a moment. First, we must search
once more, but this time for the class definition of Class Int, because the data of Class Point consists
of ivars Y and X that have the characteristics of Class Int. The search reveals:

:CLASS INT <SUPER OBJECT
 2 BYTES DATA

 :M PUT: MW! ;M (store integer)
 :
 :

;CLASS

Class Int is another one of Yerk's predefined classes. It states, first of all, that its superclass, like
many in Yerk, is Class Object. Next, it states that two bytes (16 bits) of data are set aside for each
value whenever an integer object is created. The third line is a method of this class (preceded by :M
and ended by ;M). The message inside this method definition stores an integer in a special area of
memory (don't worry now about details of this method definition).

Going back to the Class Point definition, the method in its fourth line is a single instruction for Yerk

to store both the X and Y coordinates in memory. Therefore, every time one of the ivars (TopL or
BotR) is given two numbers for an X,Y coordinate, the entire coordinate is stored by one PUT:
message.

Returning at last to Class Rect, then, the list of two instance variables for this class means that an
object of Class Rect holds reserved space for all the data needed by the two instance variables. And,
as you've seen, the two instance variables will require a total of four integers to signify the opposite
corners of the rectangle's boundary.

In the method list in the Class Rect definition are two methods:

:CLASS Rect <Super Object
 Point TopL
 Point BotR

 (l t r b --)
 :M PUT: PUT: BotR PUT: TopL ;M
 :M DRAW: ABS: Self CALL: FrameRect ;M

;CLASS

As detailed in the stack notation, the first method, PUT:, requires four integers on the stack (here
signified by the letters l, t, r, and b) before an object executes it. The first two integers (the ones on
the top of the stack) are put into the object's BotR reserved cells as soon as the PUT: BotR message
finds the definition of the PUT: method in BotR's class, Class Point. The second two integers are
placed in the object's TopL cells as the result of the PUT: TopL message in this PUT: method. In
other words, when an object of Class Rect receives a message consisting of the PUT: selector, the
object searches its own class for the corresponding methods definition. The method sends messages
of its own to objects of other classes, and so on back through a chain of classes and objects until a
method is reached that is defined purely in Yerk words (as in the PUT: method in Class Int). All the
actions taken by this series of messages affect only the private data of the Rect object that received
the message.

The second method, DRAW:, calls a Macintosh Toolbox routine, named FrameRect, to draw the
rectangle according to coordinates currently in the data cells of the object being drawn. The data, of
course, must be in the proper order that FrameRect expects. FrameRect and most other Toolbox
calls seek the absolute address of an object's data. Whereas Yerk addresses are relative to Yerk's
starting point in memory, the Toolbox counts addresses only from the beginning of Mac memory.
Therefore, the ABS: Self message in the DRAW: method calculates the data's absolute address,
which is then passed to the Toolbox call.

Notice in the Class Rect listing how the methods are indented a couple spaces, and the similar parts
of the methods statements are aligned vertically. Again, the number of spaces between elements in
Yerk is not critical (as long as there is at least one), but messages in methods are easier to read if you
separate them by two or three spaces.

To end the class definition, ;CLASS (pronounced "semicolon class") is placed at the left margin.
This position helps you pick out the beginning and ending of class definitions on long listings of
Yerk source code.

End of lesson 5

Lesson 6

Objects and Their Messages
Now we come to creating an object of Class Rect and sending messages to that object so it can select
the methods to execute. To create an object of Class Rect, the syntax is simply the name of the class
followed by the name you want to assign to the object. For an object named "Box1" of Class Rect,
the statement would be:

Rect Box1

That's all there is to it. By creating this object, you have added a new Yerk word, "Box1," to the
dictionary in memory. You can visualize the object in memory to look like Figure 1-6:

Figure 1-6

Zeros are placed in the instance variable cells when the object is created, and they are holding space
for numbers whenever the object receives a message to put data there.

When you type a Yerk message in a program, it has three parts to it: the parameters, selector, and
receiver.

Parameters are the numbers to be passed to the operation. They are placed on the parameter stack
just like parameters in Lesson 1. Not all messages have parameters, of course. Some operations
don't require any numbers be passed to them.

The second part, the selector, is actually the name of the method containing the operation you want
the object to perform. In other words, the object "selects" which method of its class is to be put to
work; the object matches the message's selector with the method in the object's class (or up the
superclass hierarchy if there is no match in the immediate class).

The last part of a message, the receiver, must be the name of an object. It is the "thing" on which
you want to perform the operation specified by the selector. In the accountant metaphor, the receiver

is the name of the accountant who is to "prepare the returns."

Since Box1 is an object of Class Rectangle, you can send a message to it that selects one of the
methods defined in Class Rectangle. If you send the message:

300 20 400 100 PUT: Box1

you put the coordinates 300, 20 and 400,100 into the data cells reserved for TopL and BotR in the
Box1 object. After all, that's what the PUT: method in Box1's class does: it places two sets of two
parameters into an object's data cells.

If, at some future time, you create a new object of Class Rect, called "Box5," Box5's data cells
would be empty at first. A separate PUT: message would have to be sent to Box5 to place Box5's
coordinates in that object's data cells. This is how objects maintain private data.

To draw the objects on the screen, you need to send another message, one that calls upon the DRAW:
method of Class Rect. The message would be:

DRAW: Box1

If you were defining Class Rect from scratch, you could also define a new method that combines the
functions of two methods into one. Then, a single message would take care of both the PUT: and
DRAW: methods. For this to happen, you need a way for the new method to look up the methods in
the same class. That's where a message receiver called "Self" comes in handy. With the new method
(PLACE:) the class looks like this:

:CLASS Rect <Super Object
 Point TopL
 Point BotR

 (l t r b --) (store coordinates)
 :M PUT: PUT: BotR PUT: TopL ;M
 :M DRAW: ABS: Self CALL: FrameRect ;M

 (l t r b --) (draw at new coordinates)
 :M PLACE: PUT: Self DRAW: Self ;M

;CLASS

The PLACE: method contains the messages, "PUT: Self" and "DRAW: Self." The PUT: Self
message is saying, "Do to the current object everything that the PUT: method in this class does."
The same goes for DRAW: Self. If you had intended one of these messages to look up a method in
Rect's superclass, the receiver would have been "Super," as in PUT: Super.

Something important happens when you have the PUT: Self message inside the PLACE: method.
The PLACE: method now expects to find four integers passed along with any message bearing its
selector, just like the actual PUT: method that executes the storage command requires four integers.
Therefore, to both locate and draw Box1 on the screen, you would send the message:

300 20 400 100 PLACE: Box1

Summary
Before taking one more step, let's summarize. Creating a Yerk program entails the following steps:
defining classes; creating objects that are instances of those classes; and then sending messages to
those objects. Building a hierarchy of classes starts with the broadest class and works toward the
more specific, with subclasses inheriting the characteristics of their superclasses.

To help you visualize the structure of the program example detailed in this chapter, look at Figure 1-
7. It graphically portrays the relationships between the classes and objects discussed above.

Figure 1-7

Given this framework, when you issue the message 300 20 400 100 PLACE: Box1, the parameters
fill Box1's data cells held in reserve when Box1 was created. The characteristics of the data had
already been determined by the ivars TopL and BotR; the characteristics of those ivars had been
likewise determined by the ivars X and Y, which, in turn, had been defined by the methods of their
defining class, Class Int.

Therefore, you probably recognize that the relationships in Yerk classes and objects are on multiple
levels. On the one hand, you have the relationships between superclasses and subclasses. On the
other hand, you have the relationships between ivars and their defining classes. Both relationships
cascade through the hierarchy of a Yerk program independently of each other. That will become
even clearer as we make one further extension to the example above.

End of lesson 6

Lesson 7

Modifying a Yerk Program
We're going to add another class. This one, however, will be a subclass of Rect because our goal is
to produce an object that draws a rounded rectangle. A rounded rectangle requires the same
parameters as a rectangle with the addition of one more, the size of the ovals whose curvature rounds
the corners. The oval's dimensions are determined by the number of pixels high and wide as in
Figure 1-8.

Figure 1-8

The Toolbox call, FrameRoundRect, expects these dimensions as a 4-byte data cell -- a construction
that Yerk handles well as a Point instance variable.

Since a rounded rectangle has so much in common with objects created by Class Rect, the logical
addition would be a subclass of Class Rect called, Class RoundRect. It needs one additional piece of
data, which we've named ovalsize. The data will be converted from height and width figures to a
point, which the Toolbox expects. Therefore, the instance variable for Class RoundRect will be
Ovalsize of the Class Point. By virtue of its inheritance from Class Rect, then, an object of Class
RoundRect will have a total of three ivars: TopL, BotR, and Ovalsize.

Next, the class needs a method to store the values its object receives from messages. The ovalsize
value for this class will be stored by way of an INIT: method inside Class RoundRect. The values
for the coordinate points (TopL and BotR) can be initialized just like the points in Class Rect,
because the Put: method from Class Rect is still available to an object of Class RoundRect. Simply
define the new part for RoundRect that stores the ovalsize, and pass the burden of coordinate storage
back onto the PUT: method in the superclass.

Class RoundRect needs a DRAW: method to act on the values stored in an object created from its
own class. In this particular draw: method, (ABS) retrieves the absolute address of the object to be
drawn, which in the case is the address of the rectangle coordinates. The Toolbox uses this address

to locate the values it uses as parameters); then the ovalsize values are put on the stack in a form the
Toolbox expects (using the int: method of Class Point), and then the proper Macintosh Toolbox
routine (FrameRoundRect) is called to do the actual drawing on the screen.

The subclass definition looks like this:

:CLASS RndRect <Super Rect
 POINT OvalSize

 (w h --)
 :M INIT: PUT: OvalSize ;M

 (--)
 :M DRAW: (abs) int: ovalSize call frameRoundRect ;M

;CLASS

That's all that was needed to add an entirely new kind of object to Yerk.

(Note: If you want to try this yourself, type the above class definitions in an editor, save the source
file, and load the file into the yerk.com window. To do this get your editor out. In a clean edit
window, type the class definition above. When finished, select Save As... from the Editor menu, and
assign a short, recognizable name to the file, like "rr." Close the editor window to return to
Yerk.com. Load the file into Yerk.com by selecting Load from the File menu and choosing your
file.)

Once the class is defined, it is now ready for the creation of an object like:

RndRect Cynthia

To draw this object on the screen would take a message like:

20 30 init: Cynthia
300 20 400 100 put: Cynthia
draw: Cynthia

The 20 and 30 values are the width and height of the oval in the rounded corners. The PUT: method
is inherited from the superclass Rect, and sets the rectangle coordinate. Look how the addition of
this subclass works within the structure of the overall program in Figure 1-9.

Figure 1-9

Next, you'll be introduced to the powerful building blocks of Yerk: the predefined classes.

End of lesson 7

Lesson 8

Predefined Classes -- An Introduction
Yerk comes with a number of predefined classes that provide you with a strong foundation upon
which to build your programs. The more you know about these classes -- especially their methods
and the powers of the objects they create -- the more comfortable you will be in designing your
programs. Yerk in many ways is like an Erector Set -- we provide the pieces, you provide the
imagination to turn those pieces into a usable program.

Predefined classes serve an important function in Yerk. They insulate you from the concerns of
extensive stack manipulations and other memory maintenance chores for frequently used Mac
Toolbox operations: windows, menus, graphics, disk file manipulation, and dozens more. In fact,
most of the complex stack stuff is handled within the predefined Yerk kernel, so even the methods in
the predefined classes will be largely understandable to you by the time you're finished with this
tutorial.

What this all means is that while you send comparatively simple messages to objects derived from
those classes, you are automatically performing very sophisticated memory manipulations not far
different from those that an Assembly Language programmer would use. You are also left with
fewer concerns about making your program Mac-like, since the predefined classes point you in the
right direction from the very start.

You will soon want to begin scanning through the source code of the predefined classes. While
much of the code is already compiled in the disk file Yerk.com, the text of the source code is also on
your Yerk disks. You can view and print these files using either a desk accessory Editor or a word
processing program, such as MacWrite. Eventually, you will find it helpful to keep a printout of all
the source code in a looseleaf binder. At your earliest convenience print out the text files in the
System, Toolbox, and Demo Classes folders on your Yerk disk. Put the printouts in alphabetical
order according to the name of the files. You will then have a much easier time tracing the hierarchy
of a class chain or finding the details about a particular method of a class.

As you have seen on the Yerk disk, Yerk predefined classes are divided into three groups. One
group, called Yerk System Classes, consists of classes that are not necessarily specific to the
Macintosh. The System Classes control things like file manipulation, basic data structures (integers,
variables, arrays), and other computer housekeeping tasks. These classes, of course, have been
designed to work specifically with the Macintosh, but they work largely behind the scenes, since
they don't directly affect the way you and the computer communicate with each other.

A second group, called Toolbox Classes, are those that make the connection between the
programmer/user and the graphic elements of the Macintosh. "Graphic elements" is a broad
category that includes such things as menus, windows, text input, mouse manipulation, and program

control via the mouse or keyboard. The Toolbox Classes are the highly visible, "show biz" classes of
Yerk.

The third group, Demo Classes, consists of demonstrations files.

Most of the predefined classes in both categories are subclasses of a kind of Master Superclass,
called Class Object. While Class Object, itself, is a subclass of yet another superclass, Class Meta,
you won't have to concern yourself with that particular relationship. Just think of Class Object as the
ultimate superclass of all classes, and you won't go wrong. Class Object is predefined in Yerk, and is
the Yerk source file called "Object."

Data Structure Classes
Among the most used predefined classes are several that are grouped into a cluster called "data
structures." Figure 1-10 shows the organization of the Yerk data structure classes, which are listed in
the Toolbox Class file called "Struct" and "Struct1."

Figure 1-10

These classes form the basis of much number and string (text character) storage and manipulation
inside a Yerk program. In the rectangle example in Lesson 6, you already saw how instance
variables of one basic data structure class, INT, were used as components of coordinate point
objects, which were, in turn, used as components for a rectangle object.

The three classes to the left of the dotted line in Figure 1-10 are called scalar classes because they
reserve a fixed amount of memory space for each instance of their class (just like a ruler marks a
fixed area according to its "scale"). An integer object, for example, always has two bytes reserved
for data, whether or not both bytes are filled with data when an integer object is created.

To the right of the dotted line in Figure 1-10 are a group of indexed classes. You can tell from the
names of most of them that these classes provide the rules for setting up arrays in Yerk programs.
An indexed array is a convenience that helps your program reach into a list of data in memory and
pick out desired pieces. If you consider that an array object might look something like Figure 1-11
in memory:

Figure 1-11

you'll notice that some data cell have reference numbers attached to them. Each number is an index
-- like an index tab in a three-ring binder -- to that data cell. It is much easier to reference an object's
data by an index number than it is to cite the specific address in memory for the piece of data your
program needs at a given moment.

The differences between the various indexed classes in Figure 1-10 include the number of bytes each
data cell is to contain (1, 2, or 4) and other considerations discussed later.

Other Predefined Classes
Another group of classes that gets a workout is the one that links you to QuickDraw, which is
Macintosh's powerful tool for accessing many of its graphics features. Figure 1-12 shows the
QuickDraw classes and the superclasses from which they were derived:

Figure 1-12

Other graphics oriented classes include those that help you create windows, menu bars, and menus,

plus a class called Control that reigns over reactions to clicking the Mac mouse on buttons and scroll
bars. In addition, there are numerous predefined classes and objects that give you shortcuts to
opening and closing files, sending output to the printer, producing sound, and other functions.
Part III of this manual contains in-depth explanations of Yerk's

predefined classes. You will look to these reference sections often once you have completed this
tutorial.

End of lesson 8

Lesson 9

Defining New Yerk Words
We said earlier that you can add words to the Yerk dictionary while building a program. In fact, that
is largely what programming in Yerk is all about. Class names, method names, and object names
become part of the dictionary in your program. Defining new words in Yerk also lets you write your
own shortcuts by defining one short and simple word to take the place of several commands that
otherwise require more typing precision.

Special Note: Unless you save to disk the dictionary you've assembled for a program, the words and
definitions will not be remembered by the Mac if you Quit Yerk or turn off the computer. In the
remainder of this tutorial, you will be defining new words that pertain only to this tutorial. If you
wish to save the current state of the dictionary at the end of a lesson, then select Save As... from the
File menu and type in a name for the file. You can also type "Save" at the Yerk prompt, space one
space, and type the name you want to give to the file. In either case, you will be able to recall the
dictionary at a later time by double-clicking the file icon on the Desktop.

The first definition exercise will be to define a new word that takes care of the symbols in a simple
addition problem. The new word is "add," although you could choose any word not already in the
Yerk dictionary.

The safest way to doublecheck that a new word you want to define is not in the dictionary, is to issue
the "tick" command with the word you want to test for. In Yerk, a tick is an apostrophe. By typing
apostrophe, space, and the word you're testing, Yerk searches the dictionary for the occurrence of
that word. If the word is in the dictionary, tick will leave a number on the stack (the location in
memory of the word's definition). But if the word is not in the dictionary, the message "not found"
appears on the screen, and you're in the clear to define a word with that name:

0->' window <RETURN>
1->.

<RETURN>
50346 0-> <RETURN>
0->' twindow <RETURN>

TWINDOW? not found
File Stack:
Token=TWINDOW

0->_

You could, instead of using the "tick" command, use the decompile module in the Utilities Menu, or

type:

0-> de' window
<RETURN>

The definition of the word 'window' will be printed in the Yerk window. To stop the listing, hit any
key. The decompiler is a handy utility to learn the definitions of words without having to look them
up in the source.

You define a new Yerk word by typing a colon, a space, the name of the new word, two spaces (one
space is required, the second improves readability in a program listing), the sequence of values
and/or commands to be performed when you use that new word, and then a final semicolon,
indicating the end of your new definition. This kind of Yerk definition is called, aptly enough, a
colon definition. Notice especially that although class and method definitions don't want a space
between the colon and either Class or M, these standard colon definitions do. It might be easier to
think of :Class and :M as being special purpose colon definitions.

Here's an example that defines a new word, "add," which will perform the addition of two numbers
on the stack, display the results, and move the Yerk prompt to the left margin of the next line
(remember, if you're typing the definition from the Yerk prompt, you don't need to type the stack
definition):

 (n1 n2 --)
: add + . cr ; <RETURN>

The + operation expects to find two numbers on the stack. Therefore, to use your new word, you
would type two numbers (which go onto the stack) and then the new word:

0->2 6 add <RETURN>
8
0->

A good exercise at this point would be to define new words to simplify the other basic arithmetic
operations.

Named Input Parameters
We're going to make Yerk a little easier for you by reducing what may be undo concern about the
way numbers are stored on, and recalled from, the parameter stack. Whenever you define a new
Yerk word, Yerk lets you assign names to the parameters that are passed to it. After that, you needn't
worry about the stack or the order of the numbers: when you need them for operations, simply call
them by name.

As an example, use the arithmetic problem cited earlier. If you recall, the problem was:

5 * 12 * 50
 40

To calculate this with Yerk previously, you had to multiply the three numbers in the numerator, and
then place the denominator on the stack before dividing. Watch how this is simplified in a definition
that performs the math with named input parameters:

: formula {denom n1 n2 n3 -- solution }
n1 n2 n3 * * denom / ;

The magic of named input parameters takes place inside the curly brackets. Whenever the formula is
executed like this:

0-> 40 5 12 50 formula <RETURN>

the first thing that happens is that the values are taken from the stack and put in a special area of
memory where they are tied to the names in the curly brackets in the same order as they were put on
the stack. Once that happens, their order is unimportant. Their names are used to fill in the values
places in the calculation. The "solution" parameter is optional, in that it serves no computational
purpose, yet it helps readers of your code better understand your definition. It is important to bear in
mind that the names and values you assign to named input parameters are valid only within their
own colon definition. You could use the same names with the same or different values in other colon
definitions without any interference.

Named input parameters become very powerful in the way you can adjust their values in the course
of a colon definition. Consider, for example, this formula:

a2 + b2

Since the computer can compute only one square operation at a time, it needs to hold the result of
one square while it calculates the second before it can add the two squares. A Yerk definition for this
formula would be:

: formula1 { a b -- solution }
a a * -> a
b b *
a + . CR ;

The arrow operation (->) stores the value currently on the stack (the result of a-squared) into the
named parameter, a. This overwrites the original value in a, which came from the stack in the
opening instant of this definition's execution. Near the end of execution, a is recalled to be added to
the results of b times b. To do the same formula without named input parameters would require
several stack manipulations that sometimes trip up even the pros.

Incidentally, there is another operation you can perform to a number stored in a named input
parameter. You can add a number to what is there with the ++> operation. For example,

10 ++> denom

inside a colon definition adds ten to the value stored in the named input parameter named denom.

Local Variables
While we're at it, we'll also introduce you to a similar concept, called local variables. They, too,
appear inside curly brackets within a colon definition, but instead let you assign names to
intermediate results that can occur inside such a definition. Local variables are preceded by a
backslash. Take, for instance, the formula,

(a+b-3c)/(b+2c)

The formula definition would be:

: formula2 { a b c \ num den -- result }
a b + 3 c * - -> num
2 c * b + -> den
num den / ;

In this example, a, b, and c in the curly brackets are named input parameters that take on the values
in the stack. The backslash indicates that the names to the right are local variables that will be called
into action within the definition. In the example, the numerator and denominator are calculated
separately and stored (->) in their respective local variables. Then, the local variables are recalled in
the proper order for the division operation to reach the result.

When you use named input parameters and local variables in the same definition, your worries about
the stack nearly disappear.

End of lesson 9

Lesson 10

Additional Math
This is a good time to learn several other Yerk math operations. They're rather simple, so you may
as well get them out of the way now, and use them as you go along. We won't be saying too much
about them here, but experiment with each of them for a bit to get a feeling for how they work.

One group of operations compares the values of the two topmost items in the parameters stack. The
result of the comparison is placed on the stack. Here they are:

MIN (n1 n2 -- n-min) Leaves the smaller of n1
and n2 on the stack.

MAX (n1 n2 -- n-max) Leaves the larger of n1
and n2 on the stack.

The next group manipulates the signs of integers -- positive or negative. One returns the absolute
value (positive value) of the topmost number in the stack. The other changes the sign of the topmost
number in the stack: if the original is positive, the operation changes it to negative, and vice versa.
Here are these two operations:

ABS (n -- |n|) Leaves the absolute value
of n on the stack.

NEGATE (n -- -n) Changes the sign of the
topmost number on the stack.

Next is a laundry list of simple arithmetic shortcuts. Their meanings should be self-evident.

1+ (n -- n+1) Adds 1 to the number on
the stack.

1- (n -- n-1) Subtracts 1 from the
number on the stack.

2+ (n -- n+2) Adds 2 to the number on
the stack.

2- (n -- n-2) Subtracts 2 from the
number on the stack.

2* (n -- 2n) Multiplies the number on
the stack by 2.

2/ (n -- n/2) Divides the number on
the stack by 2.

4+ (n -- n+4) Adds 4 to the number on
the stack.

4* (n -- 4n) Multiplies the number on
the stack by 4.

8+ (n -- n+8) Adds 8 to the number on
the stack.

The application of these shortcuts will become more apparent the more you program in Yerk. The
addition and subtraction shortcuts, for example, come in handy when you need to increment or
decrement a counter of some kind.

Displaying Text
Many times in a program, you want to display text on the screen. It may be to display a heading on a
screen or to "humanize" a purely numeric answer by describing what the number is. In the latter
case, you are actually combining the display of a pre-planned text message with a numeric answer,
which can change from execution to execution.

In Yerk, the simplest way to display a text message is by preceding it with a special print command
called the dot-quote, or ." in Yerk notation. It's just like the dot command, but instead of looking to
the stack for something to display, the dot-quote command displays the element that follows the
quote, up to a closing quotation mark. The quotation marks fall into a broad category of symbols in
computer languages called delimiters, because they set the limits of a given operation -- in this case
the display of a canned message. The text message inside delimiters is called a text string, or just
string.

Text strings can be made part of Yerk word definitions very easily. In the following example, you'll
define the word "hi" so that it prints a greeting message from the computer.

: hi ." hello, this is Yerk operating on the Macintosh. " cr ;

Now, when you type "hi" at a Yerk prompt, the message between the quotes appears on the screen in
capital letters.

One of the nice things about Yerk is that you can use previously defined words inside the definitions
of new words. Therefore, you could take the "hi" Yerk word and incorporate it inside yet another
Yerk definition. For example:

: greeting hi ." How are you? " cr ;

produces not only the message of "hi", but an additional text string whenever you type "greeting" at
a Yerk prompt. Try it.

Now combine your knowledge of arithmetic operations and text strings to humanize your earlier
arithmetic word, add. In this case, you're going to redefine add. To do this, simply type in the new
definition. Yerk will alert you that you have redefined the word when you press Return. Here's the
new definition:

: add ." The sum is: " + . cr ; <RETURN>

ADD is redefined 0->_

To use the new word, issue the command at the Yerk prompt like this:

0->10 20 add <RETURN>
The sum is: 30

0->

Explicit Stack Manipulations
While named input parameters and local variables will disguise most stack manipulation for you,
there may be instances in the development of a Yerk program when the order of items in the stack
requires an explicit move of some values for a particular operation. Conversely, the stack may have
a number on it that you simply don't need anymore, and want to dispose of. In

these rare cases, you can choose from a series of stack manipulation commands which should get
you out of the stickiest problems.

Here are three stack manipulation operators that you should keep in the back of your mind:

SWAP (n1 n2 -- n2 n1) Switches the order of the
topmost two items in the parameters stack.

DUP (n -- n n) Duplicates the topmost
stack item and places the new copy on top.

DROP (n --) Removes the topmost
stack item. If another item is next in line, it then becomes the
topmost item.

SWAP is used most often when two values are on the stack, but their order is wrong for a subtraction
or division operation. In fact, it could have been used in a less elegant definition for the problem
cited in Lesson 3,

5 * 12 * 50
 40

By putting the divisor at the bottom of the stack (the first one in), you can perform all the
multiplications and then switch the order of the two remaining numbers on the stack so they divide
properly. The revised operation would be:

40 5 12 50 * * swap /

The colon definition that calculates this would be:

 (denom num1 num2 num3 -- solution)
: formula * * swap / ;

DUP is sometimes useful for particular arithmetic applications. An example of how DUP works is to
use it to calculate the square of a number. Instead of entering two exact values onto the stack, you
can enter only one, duplicate it, and then multiply the two values on the stack like this:

4 dup *

Calculating the cube of a number could be performed like this:

4 dup dup * *

Therefore, you could set up a Yerk word "cubed" to perform the cube calculation:

 (n1 --)
: cubed dup dup * * . cr ;

Then you could type "3 cubed" from the Yerk prompt, and the answer would appear on the screen
like this:

0->3 cubed <RETURN>

27
0->_

Experiment with the other stack manipulation operators described above. Place a few numbers in
the parameters stack and issue the commands. Then display the contents of the stack (remember .s)
to see exactly how the contents of the stack are affected by those operators. If you need to, you can
combine two or more stack manipulation operators in the same Yerk word definition as your
arithmetic needs arise.

But overall, named input parameters and local variables are the preferred way of handling numbers
on the Yerk stack. Tracing and debugging a program is much easier than with explicit stack
manipulations. And because named parameters and local variables are more intuitive, there is less
chance of making a mistake in the first place.

End of lesson 10

Lesson 11

How Yerk Makes Decisions
A decision -- both the human and computer kind -- is little more than the result of a test of
conditions. For example: if it is true that the light switch is ON when you leave the room, then you
make a small detour to hit the switch on your way out. In other words, you are testing for a certain
condition in the course of your normal operation. If the condition is true, then you do something
accordingly. If the condition is false, then you carry on with your normal operation as if nothing had
happened.

This IF...THEN decision construction is precisely what goes on inside the computer when your
program needs to test for a specific condition -- like whether a number is odd or even; whether the
program user typed in the correct answer; and so on.

In Yerk, the IF...THEN decision process is a bit different from some other languages you may know,
largely because of Yerk's stack orientation. The formal description of the IF...THEN construction is
as follows:

 (n --)
IF xx
THEN zz

If n is non-zero (true), statement xx is executed, followed by zz; if n is zero (false) the program
continues with statement zz.

The IF part of the Yerk decision process tests for the presence of a zero or non-zero (i.e., any number
but zero) on the top of the parameter stack prior to the IF statement. Whenever the IF statement
finds a non-zero number on the stack, it performs the operation written immediately following IF.
From there it goes on to perform whatever operation after THEN. Whenever the IF statement
encounters a zero on the stack, it performs the operation written after the THEN statement. In Yerk
the "THEN" means to proceed with the program after the test, as in "first do this, then do that."

You won't be able to experiment with the IF...THEN construction as easily as the operations you
learned so far. That's because this construction must be compiled before it will run on Yerk.
Fortunately, there is a simple way to compile an IF...THEN statement without having to write a line
or two of code in an Editor and load it into Yerk (which would be somewhat time consuming for the
simple purpose of experimentation). Instead, you can put an IF...THEN statement inside a colon
definition (the contents of a colon definition are compiled when you press Return after the semicolon
delimiter). Type the following:

 (n --)

: test <RETURN>
 IF ." It's true there is a non-zero number on the stack. " <RETURN>
 THEN cr ; <RETURN>

This defines "test" as a word that performs a check on the top number on the stack. If the number is
non-zero, then the statement to that effect shows on the screen. If the top of the

stack contains a zero, then the statement does not appear. Try it by placing various numbers --
including zero -- on the stack and typing "test." Remember that an empty stack contains no
numbers, and the IF operation will cause the "empty stack" warning message to appear. A zero, on
the other hand, is indeed a number, and it occupies space on the stack.

Notice, too, how the construction is organized. The control words of the process, IF and THEN, are
indented, capitalized, and aligned with each other. This is done for the sake of readability when
looking over a long program listing. It helps you spot the pieces of the construction much more
quickly. Pay close attention to the formatting in all our examples, and follow the formats whenever
possible.

Two Alternatives
Some decisions, however, are more complex because they involve two possible alternatives before
proceeding. Take, for example, one of the most difficult decisions: getting up for work in the
morning. After the alarm has gone off, and you lie in bed deciding whether you should really get
going, or grab another half hour, your mind is testing certain conditions. IF you get up now, THEN
you'll be on time for work, or ELSE you'll risk losing your job. IF you get up now, THEN you can
get all the hot water, or ELSE you'll have to rush through the shower to get the few drops that are left
after the rest of the family has showered.

This kind of decision construction has been included in Yerk. Its definition is:

 (n --)
IF xx
ELSE yy
THEN zz

If n is non-zero (true), xx statement is executed, followed by zz; if n is zero (false), yy is
executed, followed by zz.

As with the IF...THEN construction, this decision process looks first to see if the number on the top
of the stack is zero or not before it makes any decision. Now redefine "test" so it takes into account
the ELSE provision. When you type a redefinition in the Yerk window and press Return after the
word, Yerk leaves the message that the word is redefined, but the full definition won't be complete
until you type the semicolon:

: test <RETURN>

TEST is redefined IF ." Non-zero number on stack "
<RETURN>

ELSE ." Zero on stack " <RETURN>
THEN cr ; <RETURN>

Place three numbers -- one, zero, and three -- in the stack and perform three tests:

0->1 0 3 <RETURN>
3->test <RETURN>
Non-zero number on stack
2->test <RETURN>
Zero on stack
1->test <RETURN>
Non-zero number on stack

As with nearly all Yerk operations, the IF operation takes the top number off the stack when it
performs its check. If you will need that number for a subsequent operation, then first convert the
number to a named input parameter or local variable to preserve the value for a later calculation.

Truths, Falsehoods, and Comparisons
You may be wondering how the IF...THEN construction can be useful if it can only determine
whether or not the number on the stack is zero. You might think that this kind of test would be rather
limiting in light of the "real-world" decisions that a program may have to make, such as whether two
integers are equal to each other, whether one is larger than the other, or whether a number is positive
or negative. Actually, the IF...THEN construction frequently operates at the tail end of a fuller
decision procedure that makes the real-world decisions possible. The first part of the procedure
consists of one or more comparison operators whose results are either a zero or non-zero, depending
on the outcome of the comparison.

To simplify the zero and non-zero terminology, Yerk adheres to a programming language convention
revolving around the terms TRUE and FALSE. These words are Yerk words, and represent the
values that appear in the stack as a result of the comparison operations. FALSE represents a zero in
the stack; TRUE represents any non-zero number in the stack, including negative numbers. In most
cases, however, when a comparison operation returns TRUE (non-zero) to the stack, the number
placed there is a 1. Similarly, when a comparison operation returns FALSE to the stack, the top
number on the stack is a zero.

Since these words -- or rather the numbers they represent -- are actually symbolic of a condition that
has just been tested, they are sometimes referred to as flags. Flags in programs are something like
markers planted in key places that symbolize a certain condition. A TRUE flag signifies that a non-
zero number is on the stack; a FALSE flag signifies that a zero is on the stack.

To help ingrain this TRUE/FALSE difference in your mind, redefine "test" so that it reinforces the
way the IF...THEN...ELSE construction responds to TRUE and FALSE flags existing in the stack.

: test
 IF ." True "
 ELSE ." False "
 THEN cr ;

Now, place the numbers one, zero, and four in the stack and run the test three times:

0->1 0 4 <RETURN>
3->test <RETURN>
True
2->test <RETURN>
False
1->test <RETURN>
True
0->_

Below is a list of comparison operations that test the values of one or more numbers on the stack and
leave either TRUE or FALSE flags on the stack. It is these operations you perform on real-world
integers before performing decision operations like IF...THEN...ELSE. A new term appears in the
stack notations below: boolean. This means that the result is either TRUE

or FALSE flag on the stack ("boolean" is named after George Boole, who developed a logic system
based on TRUE and FALSE values).

0< (n -- boolean) Leaves a TRUE flag on
the stack if n is less than zero; otherwise, leaves a FALSE flag.

0= (n -- boolean) Leaves a TRUE flag on
the stack if n equals zero; otherwise, leaves a FALSE flag.

0> (n -- boolean) Leaves a TRUE flag on
the stack if n is greater than zero; otherwise, leaves a FALSE flag.

< (n1 n2 -- boolean) Leaves a TRUE flag on
the stack if n1 is less than n2; otherwise, leaves a FALSE flag.

<= (n1 n2 -- boolean) Leaves a TRUE flag on
the stack if n1 is less than or equal to n2; otherwise, leaves a FALSE
flag.

<> (n1 n2 -- boolean) Leaves a TRUE flag on
the stack if n1 does not equal n2; otherwise, leaves a FALSE flag.

= (n1 n2 -- boolean) Leaves a TRUE flag on
the stack if n1 equals n2; otherwise, leaves a FALSE flag.

> (n1 n2 -- boolean) Leaves a TRUE flag on
the stack if n1 is greater than n2: otherwise, leaves a FALSE flag.

>= (n1 n2 -- boolean) Leaves a TRUE flag on
the stack if n1 is greater than or equal to n2; otherwise, leaves a
FALSE flag.

All the math in these comparison operations should be familiar to you. Remember that these
operations, like the simple arithmetic ones, are set up in postfix notation. To remember which order
to put numbers on the stack, simply reconstruct in your mind how the formula would look in
algebraic notation. For example, to find out if n1 is greater than n2, the algebraic test would be:

n1 > n2

In Yerk, you simply move the operation sign to the right:

n1 n2 >

But in this case, Yerk is testing the validity of the statement. While the numbers are tested, each is
taken from the stack. If the statement is true, then a TRUE flag goes to the stack; otherwise, a

FALSE flag goes there. Then an IF...THEN or IF...THEN...ELSE decision can be made on the
number(s) in question.

Nested Decisions
It is also possible to have more than one IF...THEN...ELSE decision working at one time. To
accomplish this, you can place IF...THEN...ELSE decisions inside one another. For example, you
can set up a series of decision operations that will examine a number in the stack,

test it for several conditions, and then announce on the screen what condition that number meets. To
do this, you'll nest several IF...THEN statements inside one another:

: iftest { n -- }
n 0<
IF ." less than "
ELSE n 0>

IF ." greater than "
THEN

THEN ." zero " cr ;

"Iftest" is defined to check whether a number is positive, negative, or zero. Enter a number in the
stack and then perform an "iftest" of it. Try positive and negative numbers and zero. The number is
assigned to a named input parameter (n) because it might have to be tested by both IF statements --
the first IF would remove the number from the stack, leaving nothing for the second IF to test. The
number is then tested whether it is less than zero. If so, "less than zero" is displayed, because the
program jumps ahead to the second THEN. If the number is not negative, it is next compared to see
if it is greater than zero in the second, nested IF...THEN construction. If the number is greater than
zero, then the TRUE flag is noted by the second IF statement, and "greater than zero" is displayed.
If the number (which has already proven to be not less than zero) is not greater than zero, then it
must be zero, and only "zero" is displayed on the screen.

The key point to remember in nested IF...THEN constructions is that every IF must have a
corresponding THEN somewhere in the same colon definition. They are nested much in the same
way that parenthetical delimiters in math formulas are nested:

(a/(a-(b*c))+c)

IF1 xx
IF2 ww

IF3 uu
ELSE zz
THEN3

THEN2 qq
THEN1 yy

The CASE Decision
It's not uncommon to have an instance in a program in which the next step could be one of several,
depending on the actual number on the stack -- not just whether it's TRUE or FALSE. For example,
a program may ask you to type a number from zero to nine. For most of the numbers, the
subsequent step is the same, but for numbers 2, 6, and 7, the outcome is different. In other words, if
it is the case of a "2" on the stack, then a unique operation takes place. Sure, you could run a series
of comparison operations and nested IF...THEN constructions on the number to narrow it down (e.g.,
testing if the number is not less than two nor greater than two), but that gets cumbersome when
you're testing for many numbers.

YERK's shortcut for this multiple decision making is the CASE structure. Using the example above,
you could define a word like this:

: CaseTest (n --) (Print TWO, SIX, SEVEN, OTHER)
CASE

2 OF " TWO " ENDOF

6 OF ." SIX " ENDOF
7 OF ." SEVEN" ENDOF
." OTHER "

 ENDCASE ;

This word takes the number on the stack and checks whether it is a CASE OF 2, 6, or 7. If a
particular CASE is valid, then the branch executes statements until it encounters an ENDOF
delimiter. At that point, execution jumps to ENDCASE, ignoring all other statements. If none of the
cases are valid, then execution continues toward the ENDCASE delimiter. If a statement is inserted
before ENDCASE (as is ." OTHER " in the example), then it is executed whenever the test of cases
fails.

End of lesson 11

Lesson 12

Logical Operators
There will probably be occasions in future programs in which you will have performed two
comparison operations, and the resulting flags from those operations will be sitting on top of the
stack. How the program proceeds from there depends on the state of those two flags. If one flag is
TRUE and the other FALSE, they may meet the prerequisite that only one of the comparisons needs
to be true for a certain operation to take place (e.g., n1 is less than n2, but n1 is not less than zero).
Conversely, you may need both flags to be TRUE for a certain operation to take place (n1 is both
less than n2 and less than zero). In these special cases, you can use the logical operators, AND and
OR.

Both of these operations look at the binary makeup of two numbers and perform binary arithmetic on
them to determine the state (TRUE or FALSE, 1 or 0, on or off) of each bit in their binary
equivalents.

0001 (binary number 1)
AND 0011 (binary number 3)

0001 (1 "AND" 3 equals 1)

0001 (binary number 1)
OR 0011 (binary number 3)

0011 (1 "OR" 3 equals 3)

The AND operation above returns a TRUE for the rightmost column of bits in the binary numbers
because both bits are TRUE. The OR operation above returns a TRUE for the two rightmost column
of bits in the binary numbers because one or both bits in each column are TRUE. The names for
these operations, AND and OR, are sometimes used as verbs, as in "I want to AND 1 and 3."

In Yerk, these words have the following definitions:

AND (n1 n2 -- n3) Performs a bit-wise AND
of n1 and n2 and leaves the result on the stack.

OR (n1 n2 -- n3) Performs a bit-wise OR
of n1 and n2 and leaves the result on the stack.

As indicated by the Yerk stack notation above, the proper format for these logical operations is to
place the numbers on the stack and then issue the operation name. For example:

0->1 3 AND . cr <RETURN>

1
0->_

Experiment with AND and OR in this fashion. Remember that these operations are working on the
binary equivalent of the decimal numbers you type into the stack. If you have difficulty
understanding an answer, try working out the problem on paper by converting each number to

binary and then performing the AND or OR arithmetic on the numbers as shown above. Once you
understand the concept, you can trust Yerk to do these operations correctly for you at all times.

Loops
Computer programs frequently need certain operations to be repeated a specified number of times.
For example, finding the sum of 10 numbers in the stack would normally take a stream of nine +
statements. To a programmer's way of thinking, this makes the program several steps longer than
necessary. A programmer would rather find a shortcut way of repeating that operation as many times
as is needed to do the job, without increasing program size with a long series of identical commands.
That's where the loop comes in.

A loop sets up a kind of merry-go-round for your program, with a beginning and an end. At the end
of the loop is an instruction that tells the program to "loop back" to the beginning of the loop. All
the statements between the two are repeated in their entirety each time program execution goes
through the loop.

Yerk has two major categories of loops: definite and indefinite. As their names imply, each category
has a different way of figuring out when to stop going around in loops. The definite loop performs
only as many loops as the program specifies; an indefinite loop, on the other hand, keeps looping
until a certain condition is met. Let's look at each kind of loop more closely.

Definite Loops
Consider the 10-number addition problem noted above. Since you know ahead of time that there
will be exactly ten numbers on the stack before any addition takes place, you could use a definite
loop to perform nine addition operations on the stack.

The construction of a definite loop in Yerk consists of a DO...LOOP statement, which expects to find
two numbers on the stack before the DO executes. The two numbers represent the beginning and
ending count of repetitions that the DO...LOOP statement is to make.

Because loops work in compiled statements only, put them inside colon definitions to see how they
work. Define a new word that adds up 10 numbers from the stack by performing nine repetitions of
addition:

 (n1...n10 -- sum)
: addten 9 0

DO +
LOOP . cr ;

During execution, DO...LOOP counts up from zero to nine each time through the loop. After the
ninth time around, the program is let out of the loop; it proceeds to display the contents of the stack
(the sum) and to send a carriage return to the screen.

You may be wondering where Yerk keeps track of the loop counter if the parameter stack is used to
hold all the numbers that get added. The answer holds one of Yerk's powerful features, called

indexing, which will play an increasingly important role the more you learn about Yerk.

When you typed the 9 and the 0 prior to the DO...LOOP construction in the example above, what
you couldn't see was that the two numbers were automatically shifted over to another part of
memory. The first number you typed (the 9) is called the limit, because that number

represents the limit of how many times the loop is to be executed. The second number (the 0) is
called the index. This number counts up by one each time through the loop. So, the first time the
DO...LOOP construction is encountered in the above example, the index number counts up to a one;
the next time to a two, and so on. When the index and limit numbers are equal, then the DO...LOOP
construction "knows" that it's time to move on.

What's interesting about this kind of indexing is that you can use the index number as a counter
while executing a loop. By setting the limit and index numbers to integers you need to operate with
inside a loop (they can be any integers you want), you can copy the index number to the parameter
stack each time around the loop and use that number for a calculation, a graphics plot point, a
multiplication factor, or whatever. The Yerk word that copies the index to the parameter stack is:

I (-- n) Copies the current index
value to the parameter stack.

Remember that this word only copies the index; it does not disturb the index in any way. Here are a
couple examples to demonstrate.

Define a word, fivecount, that displays a series of numbers from 101 to 105:

 (--)
: fivecount 106 101

DO i .
LOOP ;

Notice that the limit is set to 106. That's because the index is incremented when execution reaches
LOOP. The first time through, the index was 101, and the "I" word copied the index to the
parameter stack; the dot command then displayed it on the screen. On the fifth execution, 105 was
the index. When execution reached LOOP, the index incremented to 106, at which point it equalled
the limit and broke out of the loop.

You can similarly use the index number to perform operations on a number passed to the parameter
stack prior to execution. Consider the following definition:

 (n --)
: timestables { n1 -- }

13 1
 DO n1 i * .
 LOOP cr ;

If you then type "5 timestables," the program goes through twelve loops of multiplying 5 times the
incrementing index number, one through twelve.

You have the flexibility in Yerk to place all kinds of other statements within a DO...LOOP
construction, including all those conditional decision makers covered earlier.

There will be times when you'll want to use a DO...LOOP for the sake of compactness, but the
increment you wish to go by is something other than the one automatically performed by the loop
(increment by 1). For those occasions, you have the optional loop ending, +LOOP. Whatever
number you place in front of the +LOOP ending will be the increment that the DO...LOOP uses to
adjust the index. You can even use a negative number if you wish the loop to count backwards.
Here's how you would use +LOOP to take care of a countdown:

 (--)
: countdown 0 10

DO i . -1
+LOOP cr ." Ignition...Liftoff! " cr ;

Notice that in this case, since the program is counting backwards, the limit is zero and the index is
10. Each time through the loop, the index is incremented by a -1.

Nested Loops
It is also sometimes desirable to have more than one DO...LOOP routine going on simultaneously.
As with IF...THEN constructions, DO...LOOP operations can be nested inside one another. All you
have to remember is to supply one LOOP (or +LOOP) for each DO within the colon definition. For
example, you could add a delay loop in the "countdown" definition above to make it look like the
seconds are being counted down (a better way is to use the neon words PAUSE or WAIT defined in
source 'Interval'). Insert:

30000 0 DO LOOP

after the dot statement inside the original DO...LOOP operation. Perhaps a better way would be to
define a new word, "delay," to handle this timing delay in not only the loop (between the counting
down) but between the ignition and liftoff. Define "delay" as:

: delay 30000 0
DO
LOOP ;

Each time "delay" is encountered in the program, the computer appears to mark time while the
DO...LOOP construction whizzes in circles 30,000 times. Now redefine "countdown" as:

: countdown 0 10
DO i . delay -1
+LOOP cr ." Ignition " cr
delay ." Liftoff " cr ;

Type "countdown" and watch the seconds tick away:

0->countdown <RETURN>
10 9 8 7 6 5 4 3 2 1
Ignition
Liftoff
0->_

Incidentally, if you need access to the index of a nested loop, Yerk has a predefined word that allows
you to copy that number to the parameter stack, just like "I" copies the outermost loop index number
to the stack. That word is "J."

J (-- n) Copies to the parameter
stack the index of the next inner loop of a DO...LOOP construction .

In other words, "J" looks up the index of the loop just inside the outermost DO...LOOP construction,
and copies the current number to the parameter stack.

Indefinite Loops
An indefinite loop is another kind of loop you'll use from time to time in a Yerk program. As its
name implies, an indefinite loop keeps going in circles until a certain condition exists. It can go
around one time or thousands of times while waiting for that condition to occur. In Yerk, that
condition is the presence of a TRUE flag (non-zero number) on top of the parameters stack. One
kind of indefinite loop is defined as:

BEGIN xxx
UNTIL
 Performs xxx operations repeatedly until a TRUE flag exists on the parameters stack.

Here's an example of how you might use a BEGIN...UNTIL construction. In this case, the indefinite
loop will be waiting for you to type a lower case "a" on the keyboard. The KEY operation pauses
the program until you press a key, and then it places onto the stack a standard code number (called
its ASCII code -- explained later) for the next character typed. If the number on the stack is 97
Decimal (the ASCII code number for the lower case a), then a 1 (TRUE flag) is placed on the stack,
and the loop ends. Otherwise, a FALSE flag is placed on the stack, and execution returns to the
beginning of the loop.

 (--)
: begintest BEGIN key 97 =

UNTIL ;

Now, type "begintest," and tap all kinds of letters on the keyboard. Until you type an "a," the
program keeps going around in circles. Another indefinite loop to remember is:

BEGIN xxx
WHILE yyy
REPEAT

Always executes xxx each time through the loop, and executes yyy only if a TRUE flag appears
on the stack; loop ends when stack shows FALSE flag.

In this case, the operation after the WHILE statement may never execute if a FALSE flag exists on
the stack after BEGIN's operation (xxx).

When you're designing loops, it is sometimes possible for an infinite loop to slip in accidentally.
Avoid them. Double check the stack operations of your indefinite loops to make sure that there is
always at least one condition that will allow you or your program to stop the loop. Otherwise, your
program will appear to "lock up" and be unresponsive to your keyboard input. If an infinite loop
slips into your program, there is nothing you can do except to turn off the computer or press the
INTERRUPT button of the Macintosh Programmer's Switch, which you should install on the left
rear side of your Mac. When you press the INTERRUPT button, a warning box appears on the
screen, allowing you to resume inside Yerk.

End of lesson 12

Lesson 13

Yerk's Fixed-Point Arithmetic
The basic version of Yerk (Yerk.com) utilizes fixed-point arithmetic, also called integer arithmetic
instead of floating-point arithmetic (YerkFP.com). The primary difference between the two is that
fixed-point arithmetic functions only with integers. You had a hint of that when you started
experimenting with division in Yerk: the answer was either an integer quotient or a quotient-plus-
remainder (both of which were integers). Floating point arithmetic, on the other hand, allows you to
enter numbers with digits to the right of the decimal.

Floating-point arithmetic is convenient in many instances, especially when results of operations
traditionally are other than whole numbers: financial calculations, for example, which have cents to
the right of the decimal. But floating-point also has some drawbacks, which should be particularly
important to you as a Yerk programmer

Foremost is that floating-point arithmetic takes up more memory in the computer, increasing the size
of the Yerk kernel. This is not as significant now as it was a few years ago, when memory was
much more expensive.

Second, floating-point arithmetic usually takes more time to calculate than fixed-point. Depending
on the computer and the language, a floating-point calculation can take up to three times as long as
the same calculation operating in fixed-point.

And third, floating-point arithmetic can be less accurate than fixed point in some calculations. You
cannot, for example, multiply a number by precisely one-third in floating-point arithmetic; you must
multiply by 0.33333.... There will always be some error in the calculation, which can compound
itself after a couple further calculations based on this approximation of one-third. If you multiply 9
times 0.3333333, you get 2.9999997, rather than the desired result of 9 times one-third, or 3.

Many programs have no need for floating-point arithmetic at all. For this reason, the basic Yerk
system has only the smaller and faster fixed-point support, with floating-point available as an option
for those who need it.

But fixed-point arithmetic presents a problem of its own, because you may be accustomed to dealing
with numbers other than integers -- numbers like pi or percentages. To accommodate such numbers,
Yerk requires that you use scalars, or operations that appear to convert floating-point numbers into
fixed-point numbers.

Two of the most used scalars are those that are actually special-case combinations of familiar
arithmetic operations:

*/ (n1 n2 n3 -- (n1*n2)/n3)
Multiplies n1 times n2 and then divides that result by n3, leaving the final result on the stack.

*/MOD (n1 n2 n3 -- (n1*n2)/n3 remainder)
Same as */ but leaves both the result and the remainder on the stack.

Notice carefully the order of the items on the stack and how they are treated by the arithmetic
operations, because they are not as you would expect in a regular combination of Yerk arithmetic
operations. But the order allows you to better visualize the process by changing the algebraic infix
notation of a problem to Yerk postfix notation. To multiply 100 times two-thirds:

100 * 2 / 3 becomes 100 2 3 */

Similar operations can be used to work with percentages. Simply put a 100 in place of the n3 in the
description above and the percentage figure in place of n2.

Decimal, Hex, and Binary Arithmetic
When Yerk communicates to the Macintosh's built-in routines, it often uses numbering systems other
than the traditional decimal -- base 10 -- system. The two most often used non-decimal numbering
systems are the hexadecimal and binary. Each has very different characteristics.

The hexadecimal numbering system is a base-16 system. That is, instead of numbers increasing, say,
from one to two digits after the "ones" digit has cycled from zero through nine, it cycles after 15
digits. To denote the digits after 9, hexadecimal notation uses the first several letters of the alphabet.
Corresponding to decimal 10 is hexadecimal A; decimal 11 is hexadecimal B; and so on through
hexadecimal F. Also called "hex" for short, a hexadecimal number is usually preceded by a special
sign ($) so you know that $24 is hexadecimal 24 (decimal 36) instead of the decimal 24.

The binary system, at the other extreme, has only two digits, a zero and a one. This system may not
seem very useful in light of decimal and hexadecimal systems, but as you get further into the
Macintosh programming environment, you'll find times when binary math is absolutely essential for
ease of designing elements such as cursors, text fonts, and icons.

To show you the differences among the three bases, here is a chart of the first 20 numbers in each
base:

Decimal Hexadecimal Binary
0 0 0000 0000
1 1 0000 0001
2 2 0000 0010
3 3 0000 0011
4 4 0000 0100
5 5 0000 0101
6 6 0000 0110
7 7 0000 0111
8 8 0000 1000
9 9 0000 1001
10 A 0000 1010
11 B 0000 1011
12 C 0000 1100

13 D 0000 1101
14 E 0000 1110
15 F 0000 1111
16 10 0001 0000
17 11 0001 0001

18 12 0001 0010
19 13 0001 0011
20 14 0001 0100

You might have noticed in this list that there is a special relationship between binary and
hexadecimal in that each time one place of the hexadecimal number reaches the maximum (F), four
places of a binary number reach their maximum (1111). This relationship will prove more important
later on.

Although the binary numbers shown in the above list are 8 bits wide (each binary digit, that is, a 0 or
1, is called a bit), Yerk actually stores numbers on the stack as 32-bit binary numbers. Therefore,
even though you type the number 10 (decimal) into the stack, the number is actually stored as:

0000 0000 0000 0000 0000 0000 0000 1010

If you were to calculate how many numbers you could describe within a 32-bit binary number, it
would come out to 4,294,967,296 -- that's over four billion: plenty big for just about every job you'll
put your Mac to. But that's four billion positive numbers. How do you work with negative
numbers?

Signed and Unsigned Numbers
The answer lies in a special technique of Yerk that takes the unsigned (positive only) range of four
billion and divides it into two halves, each slightly more than two billion numbers big. One half is
assigned to the positive range, the other half to the negative. In other words, the range of these
signed numbers is plus-or-minus 2,147,483,647.

What distinguishes a signed from an unsigned number is the way you perform operations on them.
For example, if you enter a negative number onto the stack, the minus sign shows Yerk that you
intend to use a signed number. If, on the other hand, you were to enter the number three billion onto
the stack, Yerk would know that you mean it to be an unsigned number, since anything above the
plus-or-minus 2 billion range can only be unsigned.

But you can force the issue if you want, and convert the designation of a number on the stack for use
in arithmetic operations and display purposes.

To understand this process, imagine that you are using a tape recorder that has a digital tape counter
that counts in binary. If you set the counter to 0000 0000 and start to rewind the tape, the first thing
that shows up on the counter is 1111 1111, which is actually -1 with respect to zero. But if you were
to fast-forward the tape, the counter's maximum number would also be 1111 1111. That high number
would correspond to the 4 billion number of an unsigned number. But as a signed number, 1111
1111 represents the start of counting backwards from zero, that is, -1.

For some hands-on experience with this concept, consider first that the dot command you learned in
the early sections of this manual was actually a command to display the signed number equivalent of
the number on the stack. That means that it can display numbers only within the plus-or-minus 2

billion range. Prove it now by entering 3 billion (a three and 9 zeros) on the stack, and issue the dot
command.

0->3000000000 <RETURN>
1->. cr <RETURN>
-1294967296

0->_

Sure enough, the result printed as a signed number equivalent, a negative number near 1 billion.

Conversely, let's roll back that imaginary tape counter and enter a -1 (a signed number) onto the
stack. This time, however, you want to display it as an unsigned number. To do this, you use the U.
statement, which first converts the number to an unsigned number and then prints it to screen
according to the following definition:

U. (n --) Displays the number on
the top of the stack as an unsigned, single-precision number.

Try this sequence, and watch what happens:

0->-1 <RETURN>
1->U. cr <RETURN>
4294967295
0->_

Here are the other unsigned operations found in Yerk:

U* (u1 u2 -- ud) Multiplies two unsigned
single-precision numbers and leaves their unsigned double-precision
product on the stack.

U/ (ud u1 -- u2 u3) Divides u1 (unsigned
single-precision number) into ud (unsigned double-precision
number), and leaves their unsigned single precision remainder (u2)
and quotient (u3) on the stack.

U< (u1 u2 -- boolean) Compares two unsigned
single-precision numbers. If u1 is less than u2, then leaves a TRUE
flag on the stack; otherwise, leaves a FALSE flag.

U> (u1 u2 -- boolean) Compares two unsigned
single-precision numbers. If u1 is greater than u2, then leaves a
TRUE flag on the stack; otherwise, leaves a FALSE flag.

The above definitions talk of single- and double-precision numbers. In Yerk the distinction between
the two is between 32 and 64-bit numbers. Single-precision numbers are stored as 32-bit binary
numbers, while double-precision numbers are stored as 64-bit binary numbers. Double-precision
numbers are used not so much for large numbers (which are almost always taken care of by the four
billion number range of the single-precision number), but for handling parameters which must be
passed to various Macintosh Toolbox operations, about which you'll learn later.

Be aware, however, that there are Yerk statements that help you manipulate double-precision
numbers. They are:

D+ (d1 d2 -- dsum) Adds two double-
precision numbers, leaving their double-precision sum on the stack.

D. (d --) Performs a binary-to-
ASCII conversion on a signed double-precision number, and
displays the results on the screen.

D< (d1 d2 -- boolean) Compares two signed
double-precision numbers. If d1 is less than d2, leaves a TRUE flag
on the stack; otherwise, leaves a FALSE flag.

D= (d1 d2 -- boolean) Compares two signed
double-precision numbers. If d1 is equal to d2, leaves a TRUE flag
on the stack; otherwise, leaves a FALSE flag.

D> (d1 d2 -- boolean) Compares two signed
double-precision numbers. If d1 is greater than d2, leaves a TRUE
flag on the stack; otherwise, leaves a FALSE flag.

DABS (d -- d) Leaves the absolute vale
of a signed double-precision number on the stack.

It is important to remember that a double-precision number is stored on the stack in two parts, called
the most and least significant 32 bits (also called the high and low longwords). The most significant
bits are the leftmost 32 bits of an entire 64-digit binary number. These 32 bits are stored on the top
of the stack whenever a double-precision number is on the stack. To demonstrate how important it is
to know which half is on top, type the following two series:

0->1 0 d. cr <RETURN>
1
0->_

and

0->0 1 d. cr <RETURN>
4294967296
0->_

As the D. command assembles a number out of the high and low bits stored in the top two position
of the stack, it does so by placing the topmost number as the high bits. In the first example, the top
of the stack contained zero, while the second number was a one, recreating the binary number:

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0001 = 1

But in the reverse order, the 1 becomes the last digit of the high order bits, as in:

0000 0000 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000 0000

0000 0000 0000 = 4,294,967,296

One Last Set of Numbers -- ASCII
You had a preview a while back of a set of numbers called ASCII codes. These are numbers that
were assigned by an industry standards group to every number, letter, and symbol on the computer
keyboard, plus many control codes that computers use to communicate with each other and with
peripherals, such as printers. ASCII is an acronym for American Standard

Code for Information Interchange. It is this standard that allows computers to communicate so
effectively over telephone lines and allows so many different computer terminals to operate with a
wide variety of larger computers.

Information from the keyboard reaches the Macintosh as numbers according to this code. The
computer recognizes the press of the letter "a" only as the number 97 (decimal). Because each letter
and symbol has a unique number, it is possible to make comparisons of a key pressed and
manipulate characters on the screen with the many number crunching tools you've already learned.
If you know, for example, that all capital letters of the alphabet are numbered from 65 to 90, it is
possible to create a DO...LOOP that instantly prints those letters on the screen:

: alphabet 91 65
DO i emit cr
LOOP ;

EMIT is a shortcut Yerk word that displays on the screen the character that is referenced by its ASCII
number. Its definition is as follows:

EMIT (n --) Displays the character
referenced by ASCII number, n.

Other Yerk words that might go along with EMIT are:

SPACE (--) Displays a blank space on
the screen.

SPACES (n --) Displays n blank spaces
on the screen.

Here's a use of SPACES in the alphabet definition to demonstrate its power:

: alphabet 91 65
DO i dup 64 - spaces emit cr
LOOP;

It is also convenient to remember that upper and lower case letters are separated by a factor of 32
regardless of the letter. This may come in handy when you need to convert upper to lower cases or
vice versa.

End of lesson 13

Lesson 14

Global Constants and Values
Assigning recognizable names to numbers is a convenient shortcut, as you've seen with named input
parameters and local variables. But as you saw, both of those kinds of names are local -- they apply
only to a very limited section of the program, inside a definition. But Yerk also has a provision
called Value for assigning readily identifiable names to numbers such that they can be used
throughout a program.

Your program can contain many different values because you define each value by giving it a unique
name and a number that it is to hold. You define a value like this:

0->25 value Jane <RETURN>

In other words, the value named Jane is holding the number 25. To recall a value's number, all you
do is type the value name, and a copy of the number is placed on the parameter stack. Type:

0->Jane <RETURN>
1->

and the number 25 is placed on the stack.

A value is essentially a global version of a local variable, and responds to similar operations. To
store a different number in a value, you use the store arrow, like this:

37 -> Jane

This operation writes a 37 over the original number, 25. Or you can increment the number stored in
a value name with the ++> operation, like this:

13 ++> Jane

This adds the number 13 to the 37 that is already stored there. Decrementing the number in Jane
simply requires that you increment the value by a negative number:

-10 ++> Jane

If you want to define your values at the beginning of a program without placing specific numbers in
them, you can place zeros in them all, and then store (->) numbers to them when necessary:

0 value Joe

0 value Nancy
 :
 :

How Yerk Remembers Definitions
Near the beginning of this manual we said a Yerk program builds a dictionary of words. Each word
and its definition occupies a portion of the computer's memory, the amount of which depends on the
complexity of the definition. If you visualize the Mac's memory as a tall column of one-byte-wide
cells, then the words and their definitions would look as if they were stacked atop one another. Each
cell has a locator number associated with it, called an address. A Yerk program makes substantial
use of addresses behind the scenes in a running program.

But each word on that column of words contains much more information than just its name. A Yerk
definition consists of several parts, including information like whether a word is a value or a colon
definition, the numbers or other data associated with the word, and where in memory the computer
can find the definitions of words used to define that word. In Yerk, the spaces reserved for those
parts of a Yerk definition are called fields. Although you won't be working much with the actual
fields in your programs, it is helpful to understand how they work and what the terminology means if
you encounter it later.

Most Yerk words have four fields that you should be aware of:

name field
link field
code field
parameter field

and they look like Figure 1-13 on the memory column:

Figure 1-13

The name and link fields are usually grouped together as the header field. The Name field holds the
actual name you assign to a colon definition, variable, and so on. It's length varies with the length of
the actual name.

The Link field is important to Yerk because it helps Yerk programs run fast. In the link field is the
address of the next previous word in the dictionary. This facilitates the search through the dictionary
each time you type a previously defined word. The search starts at the most recently defined word
(the word nearest High Memory). If there is no match in the first word, the search looks to the link
field for the address of the next word on the list and so on backward through the dictionary. The
length of the name and parameter fields can change from definition to definition so there is not a
fixed memory interval between words.

The content of the Code field specifies whether the word is a colon definition, a value, and so on. In
the code field of a Yerk word is a memory address. During execution, the code field is saying to the
Mac, "Look at the instructions located in memory address XXXX to see what this definition is." Or,
in other words, the address in the code field points to another memory address where specific
instructions can be found. At the memory address specified by the code field address (cfa) are
instructions that make a value a value. Later, you'll also see that the cfa points to other kinds of
instructions, but the principle still holds true: the cfa is a pointer to further instructions that
determine what kind of word that particular Yerk dictionary entry is. Yerk dictionary entries without
cfas would be like a Webster's dictionary without the abbreviated notations for noun, verb, adjective,
etc.

The cells of the parameter field contains the actual data associated with a word. That data can be
raw numbers, as in a number associated with a constant. Data can also be pointers (addresses) to
other words, as you'll see in a moment. Therefore, some parameter fields consist of only a single
cell, while others can be dozens of cells long: it depends on what kind of Yerk word is being defined.
But no matter how long the list of parameters is, the cell containing the first piece of data has an
address called the parameter field address (pfa) for that particular word.

A good example of parameter fields filled with pointers is a colon definition. A colon definition fills
its parameter cells with the addresses of the words inside its definition. For example, if you type in
the following definition,

: formula swap dup * + . cr ;

the parameter cells in the "formula" word in memory contain the addresses of each word in the
definition, seven addresses (including the semicolon) in this case. The addresses in the parameter
cells point to the cfas of each defining word, like SWAP and DUP. As you might imagine, there is a
lot of pointing going on during the execution of a Yerk program.

So much for theory. Now it's time to pull together all the discussions and examples of the preceding
lessons and dive into a real application. In fact, in the remaining lessons, we will dissect three
programs to show you precisely how real Yerk programs work.

End of lesson 14

Lesson 15

One of the best ways to learn the fine points of Yerk programming is to study existing programs and
then work slowly to customize them by modifying methods, defining new subclasses, creating new
Yerk words and objects, and sending messages to the various objects in memory.

In the next few lessons, you'll be studying two programs whose source files are in the Demo Classes
folder as plain document files. The first one is called Sin, the second called Turtle. Although we
provide a listing for you in the next pages, you might also want to print out a copy of the source code
to follow along as the discussion works its way into the lesson. Sin is an excellent example of how
Yerk array-type data structures work. Turtle reinforces the class-object relationship.

In the source code discussions in these lessons, the code will be shown with line numbers off to the
left margin. These have been inserted here only to make it easier to refer to precise lines of code
when explaining various operations. There are, of course, no line numbers in Yerk code, as the Sin
and Turtle files will reveal when you look at them with an Editor or with MacWrite.

The Programs
Before we proceed, it's important that you understand what these programs were designed to do --
just as you should clearly define the goal and operation of every Yerk program you write.

Sin will actually be a general purpose building block for a great many programs, including some you
may write later. Its purpose is to create a reference table of sine values plus a fast and simple way
for later program parts to retrieve sine and cosine values.

If you're a little rusty on trigonometry, a sine value of an angle is a convenient way to work with
angular measurement. Mathematically, the sine of an angle is the ratio of the length of the opposite
side to the length of the hypotenuse of an imaginary right triangle having that angle in it. For
example, if we have an angle labeled theta in Figure 1-14,

Figure 1-14

the sine of theta equals the length of A divided by C. If you were to calculate all possible values for
sin theta, from 0 to 360 degrees and plot the results, you'll find that the values trend up and down
throughout the circle, including two quadrants with negative values (see Figure 1-15).

Figure 1-15

Notice, however, that two angular measurements can , for example have sine values of 0.5. In the
first quadrant, it's at 30 degrees. In the second quadrant, it's at 150 degrees -- 30 degrees from the
"zero" value. In other words, the sin values in the first and second quadrants are mirror images of
each other. The same is true for quadrants three and four. And the relationship between one half (0-
180 degrees) to the other (180-360 degrees) is that the second half mirrors the first, but as negative
values. Therefore, if you have a table of sine values for 0-90 degrees, it is a relatively simple matter
to calculate the corresponding values in each of the remaining quadrants. The Sin program takes
care of both the table and calculations.

Some graphics programs will likely need to fetch sine or cosine values to draw sophisticated shapes
on the screen. Sin (and its classes TrigTable and Angle) will probably come in handy for you in the
future.

Sin will often be summoned from the second program, Turtle. The intent of Turtle is two-fold. First
of all, it will create class definitions of a pen and a polygon that you'll use to experiment developing
a Logo-like environment. Turtle will also use the pen and polygons it creates (along with definitions
from Sin) to draw some sophisticated graphics on the screen. As it turns out, these graphics will be
incorporated into yet a third demonstration program, grDemo, which is the subject of the last lessons

in this Tutorial.

This building block approach is a common tactic in designing a Yerk program. Carefully,
generically designed building blocks, such as Sin and parts of Turtle, can be used in a wide variety of
programs, making it easier and faster to assemble programs from your library of proven blocks.

1 (Sin - sine table)
2
3
4 :CLASS TrigTable <Super wArray
5 4 bArray Signs (1 if negative in quadrant, 0 if positive)
6 4 Array AxisVals (90° values)
7
8 (deg -- sin) (Lookup a sin * 10000 of an angle)
9 :M SIN: { degree \ quadrant -- sin }
10 degree 360 mod (put degree in range 0 to 359)
11 degree 0< (test for negative degree)
12 IF
13 dup (test that negative degree not multiple of -360)
14 IF
15 negate 360 + (invert to equivalent positive degree)
16 THEN
17 THEN
18 90 /mod (convert degree to range 0-89 and get quadrant)
19 -> quadrant -> degree
20 degree 0= (test for an axis)
21 IF
22 quadrant At: AxisVals (if an axis, get value)
23 ELSE
24 quadrant 1 and (true for mirror quadrants 1,3)
25 IF
26 90 degree - (create mirror image)
27 ELSE
28 degree
29 THEN
30 At: Self (get sin for this degree)
31 quadrant At: signs (get flag for negative sin)
32 IF
33 negate
34 THEN
35 THEN ;M
36
37 (deg -- cos)
38 :M COS: 90 + Sin: Self ;M (cos is sin shifted by 90 °)
39
40 :M CLASSINIT: 0 0 To: Signs 0 1 To: Signs
41 1 2 To: Signs 1 3 To: Signs
42 0 0 To: AxisVals 10000 1 To: AxisVals
43 0 2 To: AxisVals -10000 3 To: AxisVals ;M
44 ;CLASS

45
46 90 TrigTable Sines (system-wide table of sines)
47
48 (val angle --) (Fill a Sin table entry)

49 : 's To: Sines ;
50 00 's 00175 01 's 00349 02 's 00524 03 's 00698 04 's
51 05 's 01045 06 's 01219 07 's 01392 08 's 01571 09 's
52 10 's 01908 11 's 02079 12 's 02250 13 's 02419 14 's
53 15 's 02756 16 's 02924 17 's 03090 18 's 03256 19 's
54 20 's 03584 21 's 03746 22 's 03907 23 's 04067 24 's
55 25 's 04384 26 's 04540 27 's 04695 28 's 04848 29 's
56 30 's 05150 31 's 05299 32 's 05446 33 's 05592 34 's
57 35 's 05878 36 's 06018 37 's 06157 38 's 06293 39 's
58 40 's 06561 41 's 06691 42 's 06820 43 's 06947 44 's
59 45 's 07193 46 's 07314 47 's 07431 48 's 07547 49 's
60 50 's 07771 51 's 07880 52 's 07986 53 's 08090 54 's
61 55 's 08290 56 's 08387 57 's 08480 58 's 08572 59 's
62 60 's 08746 61 's 08829 62 's 08910 63 's 08988 64 's
63 65 's 09135 66 's 09205 67 's 09272 68 's 09336 69 's
64 70 's 09455 71 's 09511 72 's 09563 73 's 09613 74 's
65 75 's 09703 76 's 09744 77 's 09781 78 's 09816 79 's
66 80 's 09877 81 's 09903 82 's 09925 83 's 09945 84 's
67 85 's 09976 86 's 09986 87 's 09994 88 's 09998 89 's
68
69 : Sin Sin: Sines ;
70 : Cos Cos: Sines ;
71
72 :CLASS Angle <Super Int
73 :M SIN: Get: Self Sin ;M
74 :M COS: Get: Self Cos ;M
75 ;CLASS

Building a Sine Table
Let's start with the Sin source code, which is numbered from lines 1 to 75.

Line 1
This is a comment that serves as a plain English heading for the source code, describing what this
module does. This particular module creates a table of sine values that Turtle will use to draw
complex curves and graphics. Notice the syntax of the comment: open parenthesis, a space, the
comment, a space, and close parenthesis. The space between the open parenthesis and the beginning
of the comment is critical, because it sets off the lines as a comment. Comments are not compiled
into the final code, so be as liberal with comments throughout the program as possible to make it
easier for you and others to reconstruct the execution of program parts later on.

Line 4
Here marks the beginning of a class definition for the Class TrigTable. This class establishes the
rules and procedures that will be followed for looking up sines in a sine table (the table is created in
lines 25-46). Since the sine table will be a list of sine values in fixed-point arithmetic (in a range of
0 to 10,000), two bytes of data could be used for each entry (10,000 decimal = 2710 hex -- each two-

digit hex number takes up one byte of memory). Class TrigTable is defined as a subclass of Class
wArray.

If you look at the source code listing for the superclass Array (in the struct file), you'll notice that
wArray is defined as an indexed class:

:CLASS wArray <SUPER Object 2 <indexed

When a class in indexed, it means that every object created of that class must explicitly state how big
an area of memory is to be reserved for its private data -- how many data slots should be reserved.
The number 4 in the class Array definition indicates that each slot is to be 4 bytes wide. When it
comes time to create an object from an indexed class, the line of code must begin with the number of
data slots that object will need (each slot has a unique index number associated with it). In line 25,
for example, the object Sines created of Class TrigTable is reserving 90 slots; each slot is 2 bytes
wide because TrigTable inherits wArray's 2 byte wide indexed class behavior. Indexing should
become more clear as we describe the rest of this class definition, and see some practical examples.

Lines 5-6
These two lines establish the named instance variables for an object of Class TrigTable. Every
object created from Class TrigTable will have space reserved for the two arrays created here, as well
as the indexed data noted above. The two arrays are preceded by the number of elements that they
will contain in every instance of class TrigTable, 4 in both cases.

The first array, Signs, is an array that will be storing a boolean flag to indicate whether a sine value
is positive or negative, depending on which quadrant the value is located (more on this in a
moment). Since a boolean flag only occupies 1 byte, Signs is declared to be an instance of bArray
which has 1 byte wide elements (the source for bArray is also in struct1).

The other array, AxisVals, is a 4 element array of 2 byte cells. The range of values to be stored in
this array is from -10,000 to +10,000 (the integer values the program will use to signify sine values).
The values in these four cells will be the sine values (times 10,000) of the 90 degree multiples (0, 90,
180, and 270 degrees), and will play a role in the calculation of the sine value later in this class
definition. See Figure 1-16 for a summary of the four quadrants, their signs, and sine values.

Quadrant Sign Degree Range Sine Value Range

0 + 0 to 90 00000 to10000
1 + 90 to 180 10000 to00000
2 - 180 to 270 00000 to-10000
3 - 270 to 360 -10000 to00000

Figure 1-16

Line 8
On the left is the stack notation for what takes place in the execution of the following method, SIN:.
The stack notation tells you that if you use this SIN: method as a selector in a message, and if you
pass a degree figure as a parameter, (e.g., 90 SIN: Object), then the corresponding sine value would
be left on the stack when the method's computations are completed.

The comment to the right of the stack notation tells you what is happening in this method: the
program looks up the sine value of an angle (in degrees). In the calculations the actual sine values
will be multiplied by a factor of 10,000. All sine values in the sine table, therefore, will be integers.

Line 9
This begins the definition of the method SIN:, which, as the stack notation and comment in the
previous line indicate, converts degree integers into sine values. This line is also where the named
input parameters and local variable for this method are detailed inside the curly brackets. References
to the values are made by their name, not by their stack location, thus eliminating much stack
manipulation in the course of calculating sine values in the next several lines of code. The parameter
passed to this SIN: method from a message will be assigned to the name "degree." Within the
definition, "quadrant" will be used to store the value of the quadrant (0, 1, 2, 3) for which the sine is
being calculated.

Lines 10 - 35
Next comes the actual calculation and retrieval of the sine values. Because the math in this
calculation is so tightly interwoven with IF...THEN decision constructions, we will trace what
happens to the stack at each step, as well as explain why various operations are performed.

As an overview, we can say that the math calculations first convert the degree value to be in the
range 0 - 359. Allowance is made for degree values entered as negative numbers, or degrees of
magnitude 360 or greater. Once the degree is thus normalized, it is converted to the equivalent
degree in the range 0 - 89 and the quadrant is saved for doing mirror image calculations and
determining the sign. For degrees on an axis (0, 90, 180, or 270) the sine is gotten from the ivar
AxisVals. Otherwise a lookup is performed on the TrigTable array.

To best understand the operation of the decision processes in this section, we will follow what

happens to the values on the stack when we try degree values less than 90 degrees, exactly 180
degrees, and a value in the third quadrant. But to do this properly, we should go on to explain how
the arrays are filled with the values that the method SIN: will be retrieving, and what those values
mean.

Lines 40 - 43

The method CLASSINIT: is a special method that executes whenever an object of the current class is
created. The operations in this particular CLASSINIT: are eight messages, all of them TO:
operations. The TO: selector of these messages is defined by a TO: method in the receiver's class,
bArray for Signs and wArray for AxisVals.

In the first four TO: messages inside CLASSINIT:, the storage will be to the instance variable Signs,
which, as noted at the beginning of the current class, was set up as an array in a TrigTable object to
hold four values (we intend to have only one TrigTable object, so we won't be duplicating these
arrays unnecessarily in other objects of the same class). Now notice the parameters that precede the
TO: selectors of these four messages. If you read the messages from left-to-right, you'll notice a
pattern: the rightmost value of each pair increments by one, running from zero to three. These
values are the index numbers which the array will use to label each of the four actual values that are
stored in the array. The values to be stored in the array, again reading from left-to-right, are 0, 0, 1,
and 1. In other words, the Signs array inside the TrigTable object could be visualized as something
like Figure 1-17:

Figure 1-17

Likewise, the next four TO: messages store indexed values into the array called AxisVals.

Since Class TrigTable has now been defined (all the code from line 14 through line 23), we can now
create an actual table in memory as an object of that class. The statement in line 46 does just that,
establishing an indexed array object, called Sines, capable of storing 90 values in addition to the
ivars, Signs and AxisVals. At this point, no values have been entered into the 90 cells of the Sines
array, but the space is there, ready for values to be plugged in. The array bears the characteristics of
arrays defined in TrigTable's superclass, wArray.

Lines 48 - 67
While the columns of numbers in lines 50 through 67 may look intimidating, they are really nothing
more than the values of what becomes a computer version of a lookup table, like the kind at the end
of a trigonometry book. Line 48 shows the stack notation for the Yerk word definition that occurs in
line 49. The definition defines a Yerk word, 's (the apostrophe is pronounced "tick") that performs a
similar kind of TO: storage operation as demonstrated in CLASSINIT:, but this time the storage is to
an object called Sines, which is our TrigTable object. When Sines receives a message with a TO:
selector, Sines first looks in its own class (TrigTable) for a matching definition. Since there is none
here, Sines then looks to its superclass wArray, where it finds a TO: method.

The table was designed so that the values of the degrees to be looked up would range from 0 to 89.
That way, these very degree values will have double duty as index numbers to the respective sine
values in the table. Therefore, when it comes time (in the SIN: method, above) to lookup a sine
value in the table, the degree value coming in as a parameter from a message will be used as the
index value associated with the desired sine value. We'll see how that works in a moment, but that's
why the stack notation in line 48 indicates that the parameters to

be passed with each 's operation are the sine value and the angle in degrees, when in actuality, the
TO: selector sees the degree figure only as an index number.

The sine values, then, are added to the table by the long series of 's operations, each preceded by the
sine value (times 10,000) and the double-duty index/degree value. The hex values for the Sines
array start filling up the object's memory, and look like Figure 1-18:

Figure 1-18

What Happens On the Stack
Now we can go back to Method SIN: in lines 9 to 35 to see what happens when we send three
different degree values and the SIN: selector to the object Sines. The three values will be 35, 180,
and 293 degrees. In the listings below, the numbers next to each operation indicate the actual
numbers on the stack at that instant of execution. When more than one number is one the stack, the
topmost number in the listing is the number on the top of the stack.

Statement 35 degrees 180 degrees 293 degrees

degree 35 180 293

360 360 360 360
35 180 293

mod 35 180 293

degree 35 180 293
35 180 293

0< 0 0 0
35 180 293

IF 35 180 293
dup : : :
IF : : :
negate : : :
360 : : :

+ : : :
THEN : : :
THEN : : :

90 90 90 90
35 180 293

/mod 0 2 3
35 0 23

-> quadrant 35 0 23

-> degree --- --- ---

degree 35 0 23

0= 0 1 0

IF --- --- ---
: :

quadrant : 2 :
: :

At: AxisVals : 0 :

ELSE --- : ---

quadrant 0 : 3

1 1 : 1
0 : 3

and 0 : 1

IF --- : ---
: :

90 : : 90
: :

degree : : 23
: : 90
: :

- : : 67
: : :

ELSE --- : :
: :

degree 35 : :
: :

THEN 35 : 67
:

At: Self 5736 : 9205

:
quadrant 0 : 3

5736 : 9205
:

At: Signs 0 : 1
5736 : 9205

:
IF 5736 : 9205

: :
negate : : -9205

: :
THEN 5736 : -9205

:
THEN 5736 0 -9205

Now for a description of what happens to each degree value.

The mod operation in line 10 provides the stack with the remainder of dividing the degree entry by
360. If the entry was 360 or more, this will normalize the degree value to be between 0 and 359. If
the entry was negative the mod operation returns a positive value between 0 and 359, and further
normalization is required. Line 11 tests the degree entry to see if it was negative. If it was negative,
lines 12 - 15 perform the additional normalization. Lines 13 - 14 perform a test to see if the partially
normalized result is zero, in which case the value is alright as is. If it is not zero, then line 15 puts it
correctly in the range 0 to 359.

The /mod operation on line 18 takes the normalized degree value off the stack and returns a quotient
and remainder. A quotient of zero indicates it is in the upper right quadrant, a one places the degree
in the second quadrant, and so on. The remainder becomes the degree value that will be checked
against the sine table, since the table contains values for only a 90 –degree chunk of the full 360
degree range. On line 19 these values are taken from the stack and put into local storage.

For the next operation on line 20, we recall the value from "degree" (but this does not remove it
from "degree," it only copies it onto the stack) and test to see if it is equal to zero.

If the value is zero, that means that the degree value is a multiple of 90 degrees, and therefore lies on
a boundary between two quadrants. To save time and calculation, the sine values for those four
boundaries have been stored in the AxisVals array. Since the degree value is zero, the operation after
the IF statement on line 21 is performed. On line 22 the quadrant value saved earlier is placed on the
stack and used as an index for the AT: selector. The AT: method in AxisVals' class, wArray, is the
opposite of the TO: storage operator, which was used to place values in the arrays. The AT:
operation instead fetches a value from an array object (in this case named AxisVals) according to the
index number that is on the top of the stack. In our 180 degree example, a value of 2 was saved in
quadrant and the put on the stack. The value in the AxisVals cell corresponding to the index "2" is
then placed on the stack (it has only been copied from the array, not removed). At this point, the
final sine value is in the stack, so there is no further operation needed. Following the rules of nested
IF...ELSE...THEN statements, execution continues to the outermost THEN statement, which is at the
end of the method.

But when the degree value is not zero, much more happens. The quadrant value is ANDed with 1 on

line 24 and tested to see if is 1 or 3. If so, then the degree value is recalled and has 90 degrees
subtracted from it on line 26 (sine values increase to 90 degrees, then decrease to 180 in a reverse,
mirror image). Otherwise, just the degree value is placed on the stack again on line 28.

In line 30, the AT: selector takes the index value currently on the stack (it also happens to be the
degree to be checked in the sine table) and fetches the value from the Sines array. The "Self"
notation tells Yerk to perform the AT: fetch on the Sines object.

That AT: fetch operation places the sine value from the table on the stack. One last job remains -- to
determine if the sine value is positive or negative. To check this, the sine value and quadrant number
are swapped. The quadrant number is used as an index to the Signs array in another AT: fetch
operation (line 31). The values in that array are either 1 or 0, depending on whether the quadrant
requires a negative or positive sine value, respectively . If the value is a 1, then the sine value, which
is all that remains on the stack, is made negative (with the negate operation of line 33), otherwise, it
stands positive, and the method ends.

The COS: method in line 38 uses the power of the SIN: method, but simply modifies it to take into
account the mathematical relationship between a sine and cosine of an angle. A cosine can be
calculated from a sine by phase shifting 90 degrees.

At this point in the program (up to line 67), the kind of message you would send to calculate the sine
of a degree value would be:

125 sin: Sines

To simplify this even more, two Yerk definitions are added (lines 69-70). Each word sends a
message like the one above. Thereafter, the only code you need in a program to obtain the sine of an
angle is:

125 sin

Lines 72 - 75
Class Angle provides an example of how the sin and cos definitions in lines 69 and 70 can be used in
other class definitions, even though those words are defined by messages to objects of a different
class. This class, an integer class, has two methods, SIN: and COS:. They may appear to have the
same method names as methods in Class TrigTable, but there will be no interference between the
two. That's because if you create an object of Class Angle, that object looks up methods only in its
own class hierarchy. It doesn't even know Class TrigTable exists. When a method in Class Angle
uses the new Yerk word "sin," it lets the word reach into memory to do what it has to, even if it
means working in other classes -- all without disturbing the integrity of Class Angle.

The "Get: Self" message (lines 73 and 74) retrieves the value of the integer stored in an object
created from Class Angle. To store a value in that object, you would need to look through Class
Angle's hierarchy, until you found a PUT: method in the INT superclass that stores the value. For
example, if you create an object

Angle Narrow

you are setting aside a cell in Narrow's memory for an integer, because Class Angle is a subclass of

the Integer class. You would then need to send the message:

30 PUT: Narrow

to store the value, 30, in the object Narrow. After that, you can send the message

SIN: Narrow

which sets the SIN: method in Class Angle to work. The value, 30, is retrieved by the Get: Self
operation, and then the sine value is calculated by the Yerk word, Sin. With Yerk.com loaded into
memory, try this out yourself. Create an object of class Angle. PUT: a value in the object. Then
send messages to that object to calculate the sine and cosine of the value.

End of lesson 15

Lesson 16

Building a Turtle Graphics Program
Now we can look at a graphics program, called Turtle. It defines a number of complex graphics
curves and a way you'll be able to create a mini-Logo language out of several definitions in the
program. We'll have the first involvement with Macintosh parameters and Toolbox calls.

76 (Turtle Graphics Objects for Demo)
77
78 Decimal
79 (Define a turtle-graphics pen)
80 :CLASS Pen <Super Object
81 (1st 5 Ivars comprise a PenState structure)
82 Point PnLoc \ location of pen
83 Point PnSize \ width, height
84 Int PnMode
85 Var PnPatLo
86 Var PnPatHi
87 Angle Direction
88 Point homeLoc
89 Int maxReps
90 Int initLen
91 Int deltaLen \ change in len
92 Int deltaDeg \ change in angle
93
94 :M GET: (ABS) call GetPenSt ;M \ save state here
95 :M SET: (ABS) call SetPenSt ;M \ restore from here
96
97 (deg --)
98 :M TURN: +: Direction ;M
99
100 :M NORTH: 0 Put: Direction ;M
101
102 (x y --) (Draw a line to x,y if pen shows)
103 :M MOVETO: Set: Self Pack call LineTo Get: Self ;M
104
105 (d --) (Draw d bits in current direction)
106 :M MOVE: { Dist -- }
107 set: self Cos: Direction dist * 10000 /
108 Sin: Direction dist * 10000 / negate
109 Pack call Line get: self ;M

110
111 (x y --) (Goto a location without drawing)
112 :M GOTO: Put: PnLoc ;M

113
114 (x y --) (set the center coordinates)
115 :M CENTER: put: homeLoc ;M
116
117 (--) (Place Pen in center of Forth Window)
118 :M HOME: get: homeLoc Goto: Self ;M
119
120 (w h --) (Set size in pixels of drawing pen)
121 :M SIZE: Put: PnSize ;M
122 (x y w h mode --)
123 :M INIT: Put: PnMode Put: PnSize Put: PnLoc ;M
124
125 (initlen dLen dDeg --) (set parameters)
126 :M PUTRANGE: put: deltaDeg put: deltaLen put: initLen ;M
127
128 (maxReps --)
129 :M PUTMAX: put: maxReps ;M
130
131 :M CLASSINIT: Get: self 200 put: maxReps ;M
132
133 (Draw a spiral of line segments - Logo POLYSPI)
134 :M SPIRAL: { \ dist degrees delta reps -- }
135 home: self
136 get: initLen -> dist get: deltaLen -> delta
137 get: deltaDeg -> degrees 0 -> reps
138 BEGIN 1 ++> reps reps get: maxReps <
139 WHILE
140 dist Move: Self degrees Turn: Self
141 delta ++> dist
142 REPEAT ;M
143
144 (n --) (Dragon curves from Martin Gardner)
145 :M DRAGON: Dup 0=
146 IF Get: deltaLen Move: Self Drop
147 ELSE Dup 0 >
148 IF Dup 1- Dragon: Self
149 Get: DeltaDeg Turn: Self
150 1 swap - Dragon: Self
151 ELSE -1 over - Dragon: Self
152 360 Get: deltaDeg - turn: Self
153 1+ Dragon: Self
154 THEN
155 THEN ;M
156
157 \ draw an infinite Lissajous figure

158 :M LJ: { \ reps -- }
159 up: self 0 -> reps
160 get: initLen get: direction * cos 120 / getX: homeLoc +
161 get: deltalen get: direction * sin 120 / negate getY: homeLoc +

162 goto: self
163 BEGIN 1 ++> reps reps get: maxReps <
164 WHILE
165 get: initLen get: direction * cos 120 / getX: homeLoc +
166 get: deltaLen get: direction * sin 120 / negate
167 getY: homeLoc + moveTo: self
168 get: deltaDeg turn: self
169 REPEAT ;M
170 ;CLASS
171
172 \ Define a Smalltalk Polygon object as subclass of Pen
173 :CLASS Poly <Super Pen
174 Int Sides \ # of sides in the Polygon
175 Int Length \ of each side
176
177 :M DRAW: { \ turnAngle -- }
178 360 Get: Sides / -> turnAngle
179 Get: Sides 0
180 DO Get: Length Move: Self
181 turnAngle Turn: Self
182 LOOP ;M
183
184 (len #sides --) (Store sides and go to Home)
185 :M SIZE: Get: Self Put: Sides Put: Length
186 Home: Self up: Self ;M
187
188 \ Spin a series of polygons around a point
189 :M SPIN: { \ reps -- } Home: self 10 Get: InitLen Size: self
190 0 -> reps
191 BEGIN reps get: maxReps <
192 WHILE Draw: Self Get: deltaDeg Turn: Self
193 Get: deltaLen +: Length 1 ++> reps
194 REPEAT ;M
195
196 \ Default Poly is 30-dot triangle
197 :M CLASSINIT: 30 3 Size: self 100 put: maxReps ;M
198
199 ;CLASS
200
201 \ Create a pen named Bic
202 Pen Bic
203
204 \ Create a Polygon name Anna
205 Poly Anna
206 60 4 Size: Anna

Line 78
The program begins with a declaration that all numbers to follow will be in decimal. Incidentally,
you can place different portions of your program in different number bases, but

you may have less difficulty remembering what number base you're in if you stay in decimal and
precede any hex number with a dollar sign and a space (e.g., $ AE9F).

Lines 79 - 92
Beginning on line 105 is the definition of a major class for this program, the one that defines the
characteristics of a pen that draws on the Mac screen. We should point out that by defining a
drawing pen in Yerk's object-oriented environment, you can have more than one pen drawing object
in a given section of the screen (e.g., a window). The Mac Toolbox on its own does not give you this
power. Consider it an added bonus of using Yerk on the Mac. As you can see in lines 82 - 92, there
are many instance variables for this class. Some are points, some are integers, a couple are
variables, and one is an angle as defined earlier in the Class Angle (lines 72 - 75).

As the comment in line 81 indicates, the first five instance variables are the parameters that a
Macintosh Toolbox call, PenState, requires. For details on what the PenState parameters are, Inside
Macintosh's Quickdraw chapter is the best source. There you learn that PenState takes four
variables, called pnLoc (a coordinate point), pnSize (a coordinate point indicating the number of
pixels wide and high -- from coordinate 0,0 -- the pen is), pnMode (an integer), and pnPat (an 8-byte
representation of the pen pattern discussed fully in Inside Macintosh). Corresponding variables are
set up in this class so that any object created from this class will have those parameters stored in the
right place and in the right order.

The reason PnPat is divided is because the largest basic data structure readily available from the
predefined data structure classes is four bytes wide: the VAR. What we can do, then, is break up the
8-byte pnPat variable into two 4-byte chunks, called PnPatLo and PnPatHi, with PnPatHi holding the
leftmost byte values.

The remaining instance variables will be used for other purposes in the methods definitions of this
class. If you were building this class from scratch, you would probably be inserting new instance
variables in this list as you find need for them while defining methods.

Lines 94 - 95
These two methods will be used frequently whenever an object of this class draws something on the
screen. The first, GET:, copies the values of the Pen State variables from the Macintosh Toolbox to
the ivars of an object. It's like taking a snapshot of the parameters at a given moment. Thus, after
you move the pen to point x,y, a GET: saves the PenState conditions in an object's memory space.
Later, when it comes time to pick up where you left off, you can SET: the parameters, which copies
them from the object's memory to the Toolbox.

With the PenState variables saved within an object's "private data," other objects can use the same
Toolbox routines without destroying the parameters of the first object. For example, if you tell the
Toolbox to position the Class Pen object named Scripto1 at coordinate 1,1, and then save those
coordinates in Scripto1's data area, you are then free to instruct the Toolbox to position Scripto2 at
100,120, without affecting the data in Scripto1. Later, when you need to work with Scripto1, the
SET: command reminds the Toolbox where Scripto1's position was the last time.

Lines 97 - 131
The next twelve methods are responsible for manipulating the parameters that affect any object of
this class. For example, TURN: increments the angle value stored in an object's Direction ivar (+:
Direction) by the number of degrees passed to it in a message, like

30 turn: Scripto1

The Direction ivar is used by sin: and cos: methods from the last lesson. These correctly handle
degree values of greater than 359 degrees, or less than 0 degrees. For this reason, TURN: does not
concern itself with whether the new Direction is in the range 0 - 259 degrees.

UP: (line 100) simply places a 90 in the data cell of an object's Direction ivar. This is consistent
with the notation of the last chapter where the up position is 90 degrees. This will be used in a
positioning message later to reset the orientation of objects drawn with a pen object from this class.

The MOVETO: method (line 103) features a Yerk word that's new to you: Pack. First of all, the
stack notation (line 102) indicates that this method requires two parameters for the destination
coordinate. The method starts out by copying to the Toolbox (Set: Self) the PenState values in the
object's PenSt ivars. The Set: Self message does not affect the stack, since all data movement is
going on behind the scenes between the object's ivar space and the Toolbox. That means that both
parameter integers are still on the stack after the Set: Self operation. The Pack operation takes those
two 16-bit integers, each of which is sitting in a 32-bit stack cell, and combines them into one stack
cell in a special format.

To watch Pack in action, place two numbers on the stack, and list the stack (we'll only show the
parameter stack contents here, since that's all we're concerned with now). Watch what happens to
the hex values on the stack:

0->255 20 <RETURN>
2->.s <RETURN>
Parameter Stack:

 20 $ 14
225 $ FF

2->pack <RETURN>
1->.s <RETURN>
Parameter Stack:

310975 $ 1400FF

In other words, when you pack the top two stack entries, the top entry becomes the most significant
byte(s) of the compacted entry. The only reason we need to bother with the Pack operation is that
the QuickDraw call, LineTo (and many others) requires dual integer parameters be passed this way.
Therefore, the packed stack is ready for the next operation in this method, Call: LineTo, when it
comes along. The LineTo QuickDraw procedure, as noted in Inside Macintosh, draws a line from
the current pen location (the one set in the Toolbox by the Set: Self operation) to the coordinate
specified in the parameters. As soon as the drawing is completed, the new pen state is saved in the
object's memory (Get: Self).

Lines 105 - 109 present another kind of line drawing. This time the location of the destination point
is determined by the length (in pixels) and the direction (as retrieved from the Direction ivar). This
method uses a named input parameter, Dist, because it will be much more convenient to recall the
value for each of the two calculations that will be performed on it in this method. Notice that this

method makes use of the sin: and cos: methods defined in the Sin program earlier. That means that
Sin must be loaded into Yerk before Turtle.

The operations in MOVE: should now be familiar to you. The current pen state is copied from the
object's ivar to the Toolbox. Then the sine of the current direction (the object's Direction ivar is the
source of the information) is multiplied by the distance in pixels, and then divided by 10,000
(remember, sin's values have been multiplied by 10,000 for ease of handling) to obtain

the x-coordinate for the destination point (which remains on the stack). The y-coordinate is
calculated by the operations in line 108. Finally, the two coordinates are packed into one cell and
sent to the QuickDraw routine, Line, which draws the new line. After the drawing is completed, the
pen state is saved in the object's memory (Get: self).

The next four methods, GOTO;, CENTER:, HOME:, and SIZE: should be largely self-explanatory.
All of them but HOME: place new values into specific ivars, including one that affects some values
of the pen state. HOME: simply retrieves the most recent value stored via the CENTER: method,
and moves a pen class object to that location. The values you pass to CENTER: depend on the size
of the displaying window, because coordinates are relative to the upper left corner of a window, no
matter where it appears on the screen. The Mac screen is 512 pixels horizontally by 342 vertically.
A full window, like yerk.com, is roughly 500 x 320, give or take a few pixels.

INIT: (line 123) allows an object to respecify up to three pen state parameters (mode, size, and
location) by way of a single message. All parameters must be sent with the message, even if only
one of them is to be changed.

Line 126's method, PUTRANGE:, places values into an object's ivar slots that will be used as
parameters for some fancy graphics later in the program. The names stand for a change (delta) in
degrees, a change in length, and an initial length.

PUTMAX: is the method that allows you to set a value for the maximum number of repetitions some
of the graphics images should make. The effect of the parameter will become more apparent when
we get to the figures themselves.

In line 131, the now familiar CLASSINIT: method is performed when an object of this class is
created. It first saves a copy of the current pen state parameters (the ones the Toolbox starts up with)
from the Toolbox into an object's first five ivars (Get: self). Finally, the maxReps ivar for the object
is set to 200.

Lines 133 - 170
In these lines are three methods that are largely Yerk versions of math calculations for three types of
graphics images: spirals, dragon curves, and Lissajous (pronounced Lih-sah-zhoo') figures. It's not
important for our discussion here to understand the inner workings of these graphic routines. You
can, of course, trace the processes yourself, if you like.

We do, however, want to call your attention to the application of local variables in SPIRAL: (and in
LJ:). The backslash inside the curly brackets signifies that these names are local variables, rather
than named input parameters (see MOVE: above). As noted in an earlier lesson, the local variable
names are used strictly inside a definition, and have no relation to named input parameters in the
same definition.

In line 134, SPIRAL: declares four local variable names: dist, degrees, delta and reps. In line 135,
the pen is moved to the center of the current drawing window. Dist and delta are given values in line
136 by first fetching values from two of the object's ivars, initLen and deltaLen, and then storing the

values in their respective local variables (via -> operations). The third local variable, degree, gets its
value in line 137 after the deltaDeg ivar value is fetched from the object's memory. Reps is
initialized to zero, and will be used as a counter to compare to maxReps. Once these local variables
have values stored in them, they can be used throughout that method for whatever calculations are
desired, as shown in the BEGIN...WHILE...REPEAT structure in lines 138 - 142. Without local
variables, you would have to arrange for a significant amount of stack manipulation to keep the right
values in the

right places for calculation. It also simplifies your job of converting complex formulas into Yerk,
since you can construct your methods using familiar value names in your operations.

This means, of course, that the program will have to load values into initLen, deltaLen, and deltaDeg
before a SPIRAL: selector message can be sent. But that's why PUTRANGE: was defined earlier.

Class Pen ends with the ;CLASS delimiter on line 170.

Lines 172 - 199
The next section is another class definition. This class, Poly, is a subclass of Pen, so it inherits the
methods and ivars of Pen. Therefore, if you create an object of the class Poly, you can still issue
messages with selectors like MOVE: and HOME:.

Class Poly has two additional instance variables, both of them integers. When you create an object
of this class, the extra ivars are added to the list of ivars inherited from Class Pen. One ivar is for the
number of sides of a polygon object created from this class. The other is the length (in pixels) of
each side (all sides are of equal length).

The DRAW: method is an extension of the MOVE: and TURN: methods defined in Class Pen. First
the angle of the turn is calculated by dividing 360 by the number of sides, and is saved in the local
variable turnAngle. DRAW: then sets up a DO...LOOP that performs the actual polygon drawing.
Using the Sides ivar as the limit for the loop, one side is drawn (GET: Length MOVE: Self). Then
the direction is changed by the amount of turnAngle. This draw...turn action is repeated until the
index equals the limit of the loop.

SIZE: is redefined for this subclass. It takes two parameters: the length of each side and the number
of sides for the polygon. GET: Self copies the current pen state into an object's PenState ivars when
you specify the size of a new Poly object (SIZE: will be the first selector you'll send to a new poly
object, and it needs the PenState variables in its ivars right away). The size parameters are stored in
their respective instance variables, Sides and Length. This method also positions an object to the
home position (as defined by the HOME: method in Class Pen) and orients it facing to the top of the
screen (from the UP: method also in Class Pen).

The SPIN: method is a routine that draws a sequence of polygons around a center point to make
them look as if they are spinning. Notice that this method has one local variable, reps, which is used
as a counter for the number of repetitions through the BEGIN...WHILE...REPEAT loop.

Finally, the default settings for an object of class Poly are set by CLASSINIT:. Unless otherwise
specified, a Poly object will be a polygon with 3 sides, each 30 pixels long. This method also sets
the ivar, maxReps, to 100.

Lines 201 - 206
Next come two examples of objects created from the classes just defined. The first, Bic, is an object
of Class Pen. Anna is an object of Class Poly. In line 206, Anna is changed from its default 30-pixel
triangle to a square (4 sides) of 60 pixels on a side.

Experimenting With Turtle
Now that you have an understanding of the inner workings of the Turtle program, it's time to play
around with it. We'll start you off with some ideas of things you can do by creating some objects,
defining new Yerk words, defining new subclasses and even modifying the existing

methods to do some tricks. The more you play with Yerk, the quicker you will become comfortable
with all its powers.

First, you must load the file struct1 and sin (only if you have turned off the computer since the last
lesson) and the Turtle source files in that order. Load each file by either selecting the Load
command from the File menu, or typing the "slash-slash" command, as in

// turtle

Now when the file loads, you see a series of dots and occasional messages when words are redefined
or if an object name is being reused (is not unique).

Once the files are loaded, you might want to see what Lissajous figures are. Use the Bic pen object
as your drawing device. If you look closely at the methods definition for LJ:, you'll see that it needs
values in several ivars of Bic for it to function: initLen, deltaLen, deltaDeg, and homeLoc (it also
needs maxReps, but that value is set at 200 by CLASSINIT:). For convenience sake, define a Yerk
word, "lj," that a) takes three input parameters and assigns them to the first three ivars (an operation
that is performed by method PUTRANGE:), b) puts the homeLocation in the center of the screen
(performed by method CENTER:), and c) draws the Lissajous figures (method LJ:). Here's one way
to do it:

 (n1 n2 n3 --)
: lj cls putrange: Bic

250 160 center: Bic
lj: bic cr ;

Try typing in various three integer combinations (e.g., 9 11 301 lj <RETURN>) and watch the
variety of curves that are drawn. Try 2 2 2 lj, and you'll notice that the cursor prints on the screen at
the last instant before the cr brings the prompt over to the left margin. To eliminate this, you need to
turn off the cursor with the Yerk word -curs (the opposite, +curs, turns the cursor back on).

Now, define a new word that turns the cursor off before doing the Lissajous figures, and turns it on
when the drawing is completed:

 (n1 n2 n3 --)
: cleanlj -curs lj +curs ;

On some integer combinations, the number of repetitions may not be sufficient for the Lissajous
figures to complete their drawing (or before they start retracing previous steps). For example, try 12
1 1949. To increase the number of repetitions, you can send a message to Bic to change the
PUTMAX: parameter:

1000 putmax: bic

Now let's experiment with the Anna object. Right now, it is a square of 60 pixels on a side. Put the

coordinates for the center of the screen in Anna's homeLoc ivar by sending a message with the
CENTER: selector:

250 160 CENTER: Anna

Now, move Anna's PnLoc to the center with this message:

HOME: Anna

Draw Anna. The square appears on the screen. Now clear the screen (CLS) and resize Anna so the
object has 8 sides, each 20 pixels long and draw the object:

20 8 SIZE: Anna
DRAW: Anna

In both drawings, the presence of the cursor and Yerk prompt really messed things up. Therefore,
define a Yerk word that: a) clears the screen, b) turns the cursor off, c) draws Anna, d) brings the
prompt to the left margin, and e) turns the cursor back on:

: draw cls -curs draw: anna cr +curs ;

End of lesson 16

Lesson 17

Create a Mini-Logo Language
The framework established by classes Pen and Poly allow you to create a miniature version of the
Logo language, which controls the position and painted trail on the screen of a triangular object
called a turtle -- hence the name for this demo: Turtle.

We'll show you a few ways to get started. From there, you should be able to develop a rather
sophisticated Logo-like environment.

For this experimentation, we will be writing a customized version of Turtle, which we'll call Logo.
We'll be using an Editor to modify Turtle and Save it as Logo for later loading into yerk.com.

If you have come to this lesson without turning off your Mac or quitting yerk.com from the last
lesson, then you should remove all of Turtle's code from yerk.com. The fastest way to do this is to
use Yerk's FORGET operation. FORGET deletes from the current dictionary in memory all the
definitions from a word you specify. In other words, you type FORGET plus the first definition of
the Turtle program (Pen) to remove Turtle from memory.

To prove it, type:

forget pen <RETURN>

and then select List Words from the Utilities pull-down menu. After several lines have printed on
the screen, press any key (other than the space key) two times. Notice that the word on the top of the
dictionary (the one at the upper left of the listing) is Angle, which is the last definition of Sin -- the
program loaded prior to Turtle.

If, on the other hand, you are starting this lesson fresh, then start up yerk.com and load struct1 and
Sin. Our Logo program will load atop Sin.

We start by defining in our minds what we want our mini language to do. First of all, we want a
turtle on the screen that will be a triangular object from Class Poly. Next, we want to be able to
perform a few maneuvers, such as: centering the turtle on the screen; making it move forward in a
given direction according to the number of pixels we specify, while the turtle leaves a trail of its pen
on the screen; making it turn to the right or left according to the number of degrees we specify.
Finally, we'll define one shape, a square, which the turtle will draw if we tell it how long its sides
should be.

Looking through the methods available in Poly and Pen, we see that if we draw the turtle in one
location and then move it to another, the original turtle on the screen will still be there, cluttering up

the screen. Therefore, we need to define an additional method, called UNDRAW:, for Class Pen that
undraws a turtle where we tell it.

Since the UNDRAW: method will be adjusting the PenPattern (from black to white) and redrawing
the object, this method will be defined in terms of the DRAW: method. Therefore,

we can place the UNDRAW: method anywhere in the Class Poly definition after the DRAW:
method.

As far as the PenPattern parameters go, you can look in the QuickDraw chapter of Inside Macintosh
for guidance. If there is not enough information there to help (and sometimes there is not), you
always have the powers of Yerk to help you. For example, while you are experimenting with
parameters, you can place a special method inside Class Pen that fetches the current values of the
parameters from an object:

 (-- HiPat LoPat mode w h x y)
:M INSPECT: Get: PnPatHi Get: PenPatLo Get: PnMode

Get: PnSize Get: PnLoc ;M

Send a message like:

INSPECT: Bic

Then perform a .S operation to view the parameters on the stack. Experiment by placing other
values in the parameters via a message that calls the INIT: method. Try to draw some objects to
learn the results of the new parameters.

Back to the Logo example and UNDRAW:, the PenPattern values that make a white pen are 0,0
while the values for a black pen are -1,-1. Place one integer of the pair in each variable, PnPatHi and
PnPatLo, draw the object with a white pen, and then restore the pen to black. The UNDRAW:
method could look like this:

\ Erase object before moving it and restore black pen
:M UNDRAW: 0 0 put: PnPatHi put: PnPatLo draw: self

-1 -1 put: PnPatHi put: PnPatLo ;M

Here is the listing of Yerk definitions added to the end of the modified Turtle listing:

(Create Logo-like environment)
poly turtle \ the name of our Logo object
250 160 center: turtle \ define the center of the screen
10 3 size: turtle \ set turtle's size

(Erase old Logo command onscreen and reposition prompt)
: SPOT 8 210 gotoxy ;
: .OK -curs spot 15 spaces spot +curs ;

(Shortcut definition for later)
: TURN -curs undraw: turtle turn: turtle draw: turtle .ok ;

(Logo-like commands)

(--)
: HOME -curs cls home: turtle up: turtle
 draw: turtle .ok ;

(dist --)

: FORWARD -curs undraw: turtle move: turtle
 draw: turtle .ok ;

(deg --)
: LEFT turn ;

(deg --)
: RIGHT negate turn ;

: SQUARE { len -- }
 -curs 4 0 DO len forward 90 right
 LOOP .ok ;

The above Yerk words should be self explanatory, except perhaps for the two that control the
location of the Logo prompt. In Logo, the traditional prompt location is near the lower left corner of
the screen. The Yerk word .OK always moves the cursor to the prompt location after the object
makes its mark on the screen. The 15 SPACES operation is added to overprint the old command for
a cleaner look on the screen.

While in the Editor, save the modified source as "Logo" (perform a Save As... operation from the
Editor menu). Close the Editor and return to the Yerk.COM window. Select Echo During Load
from the Yerk menu. Then load Logo into memory with the Load selection from the File menu or by
typing:

0->// logo <RETURN>

The program source code will appear on the screen, line by line, as it is being compiled into
memory. If you used a word not previously defined, the load will stop, and a message will tell you
what word you need to define. As noted in the chapter on the Editor, various other messages, like
"object not unique" and "method redefined," will scroll by on the screen. As long as the load doesn't
stop, however, nothing fatal is occurring in memory. When the load is complete, clear the screen
(CLS <RETURN>) and check your program.

Starting the turtle in the home location, try issuing some Logo commands to make the turtle draw
lines, turn, and draw squares of various sizes. You'll notice that after turning the turtle to some
degree measures (especially those not multiples of 45), the turtle will not fully erase when you issue
the subsequent command. The reason is that when the Toolbox draws the turtle at odd angles, the
finishing point of the pen may be a pixel off from the original starting point. Then, when the
UNDRAW: method is invoked, it undraws from the finishing point of the last operation -- off-
register from the original motion by one pixel.

But with Yerk, that should present no difficulty. Tackle this problem yourself. Try adding another
ivar to the object that remembers the starting point of the turtle, and use that point for the
UNDRAW: operation. Then, define new YERK-Logo words that make entry of commands easier
(e.g., establish abbreviated Logo commands such as FD for Forward). This is the playground on

which to cut your teeth on the words in the Yerk glossary and class-object-message relationships.

In the remaining lessons of this tutorial, we'll be exploring some of YERK's predefined classes more
closely, with the help of an extension of the Turtle program that adds Macintosh-like features to it,
such as scroll bars, mouse input, windows, and menus.

End of lesson 17

Lesson 18

Inside the grDemo
Before we begin to explain the inner workings of the graphics demonstration program (grDemo),
you should be familiar with its basic operation. First, print out the listing for the "grDemo" and
"dmenu.txt" source files, which are located in the Demo folder (within the supplement folder) on the
Yerk disk. You will need to follow along with the source code listing to understand the discussions
in this lesson. It will also be helpful if you have handy a printout of the following file: Window, ctl,
ctlWind, VScroll, and QD.

Next, load and run grDemo to gain an understanding about what it does.

to load grDemo into yerk.com, first make sure that the following source files are on your working
Yerk disk in the internal drive:

ctl
VScroll
ctlWind
Sin
Turtle
grDemo
demo.load

Next, double-click yerk.com from the desktop to load yerk.com into memory. Then select
Load...from the File menu. When the dialog box appears, select demo.load and open it. This file
contains a list of load commands for each of the class files listed above. As each file loads, you'll see
a series of messages about various words and methods being redefined. When all the files are loaded
(the File title on the menubar reverts to black on white), type:

dstart <RETURN>

After a bit of disk activity, the program, Yerk Curves, will begin. Experiment by moving the scroll
bars and selecting different routines from the Graphics menu.

As we explain various parts of this program in these final lessons, we will be revealing many of the
Macintosh Toolbox features. While this will in no way serve as a substitute for Inside Macintosh, it
will nonetheless give you an appreciation for the many options available to you in programming
with Yerk. You should also see enough here to guide you to designing other applications.

It is important that you understand the desired results of this program before we explain it, just as it
is imperative to know what you want a program to do before you begin writing it. From running the

demonstration program you will see that this program is a demonstration of the Mac's ability to
control parameters by way of controls, like scroll bars.

Secondly, it demonstrates the Mac's ability to produce a window with a separate area in which
various graphics routines are displayed. The graphics displayed in the window are the ones defined
in the Turtle demo, explained in the last couple lessons. And third, this program shows how pull
down menus control the actions of a program.

If you were designing this program, this would be the time when you ask yourself what kind of
objects will be in the program so you can establish what classes need to be defined. Only two
classes are defined in this program: one for the controls and one for the demonstration window that
holds those controls.

The first of two class definitions is called VSCtl, and it defines the characteristics of a special kind of
vertical scroll bar that also displays a digital readout of the control's thumb setting in a little box
below the control.

Macintosh Controls
In the Macintosh environment, a control is a screen object that responds to interaction from the
mouse in such a way that the mouse causes either instant action or a change in function for a later
operation. A good example of the "instant action" kind of control is the elevator knob on the volume
control in the Control Panel of the Desk Accessories. By adjusting the knob with the mouse, you
immediately adjust the volume of the internal beeper. Likewise, when you click an "OK" button in a
dialog box, you are working with a control for immediate action. A "delayed action" control would
be something like the check box inside a Get Info dialog window that locks or unlocks documents
for dragging to the trash. When you click the mouse pointer in an empty box, an "X" fills in the box,
and the document is locked, but no particular action occurs in response. Click the pointer again, and
the X disappears, so you can go ahead and trash the document.

A scroll bar is another kind of control. It's the same kind of scroll bar you're familiar with from
MacWrite. It consists of five parts, each of which responds differently in the course of a program.
The five parts are:

Up arrow
Page Up region
Thumb
Page Down region
Down arrow

Each region is programmed to respond as needed.

An important concept to know about controls is that they must be "owned" by a window. That is to
say, one of the specifications for a control is the window in which the control is to be located.

Like many objects that the Macintosh Toolbox predefines, controls have specific identification
numbers, called control definition IDs, which tell the Mac what function the control is to play and
how it is to look. The four standard control types and their definitions IDs are:

simple button = 0
check box = 1
radio button = 2
scroll bar = 16

All controls also need to specify actions based on their interaction with the mouse. Scroll bars, with
their five distinct parts, need separate actions specified for each part. An action is nothing more than
a set of instructions to follow when a control part is activated by the mouse. In a Yerk program, the
actions, or rather the addresses of the action definitions, are stored as instance variables of a control
object. Moreover, each control part has a distinct ID number so

the Toolbox knows to link a given action with a given mouse interaction. The IDs for all Macintosh
predefined controls are as follows:

simple button = 10
check box or radio button = 11
scroll bar Up arrow = 20
scroll bar Down arrow = 21
scroll bar Page Up region = 22
scroll bar Page Down region = 23
scroll bar Thumb = 129

GrDemo Controls
The special scroll bar controls in grDemo inherit their instance variables from the superclasses
VScroll and Control. The list of available ivars includes an integer for the definition ID, an Xarray
for the addresses of a scroll bar's five possible actions, and an Ordered-col for the actions'
corresponding part numbers. In the subclass VSCtl, two ivars are added: a rectangle that specifies
the location of the digital readout box for each control and another, slightly smaller rectangle inside
the readout rectangle where the digital figures appear.

As soon as a VSCtl object is created, the CLASSINIT: method of its superclass (VScroll)
automatically makes it a scroll bar by putting the control ID number 16 into its ID ivar. The method
also places null values in each of the object's actions.

In the DISPLAY: method, the "cursor" where the digits are to be placed is positioned one pixel up
from the bottom left corner of the viewreadout rectangle. Whatever numbers were there previously
are cleared, and the new digits (retrieved by get: super) are printed in a field of 3 digits.

DRAW: is an extension of DRAW: in Class Rect and DISPLAY: in this class. It will be used to
redraw the readout box and the digits whenever the program window needs to be updated (e.g., when
it is dragged partially off and then back on the screen).

The PUT: method sets the control's value in the control superclass (precisely the opposite of the
GET: super message above in the DISPLAY: method). This method also calls the preceding SHOW:
method, which displays the updated control and its readout rectangle value. This seemingly tiny put:
method is actually doing a lot of work each time a control is adjusted.

The NEW: method, with the aid of named input parameters, builds a new control and establishes the
location of its readout box. The parameters it needs are the coordinates of the top left corner, the
vertical length of the control, and the address of the owning window. From the top left coordinate
and length values, the NEW: method in the Control superclass calculates the bottom right corner
coordinates.

Three text attribute statements set the digits' textmode to 1, the textsize to 9, and the textfont to
number 1. Textmode determines how the pen that draws the numbers on the screen will react to the

color of the screen below it. With the mode set to 1, the pen draws black on the white background.
The textsize number is the actual font size, like the sizes you select in the MacWrite Font menu. The
textsize setting of 9 calls for 9-point type.

The textfont number requires a little more explanation. In the Mac Toolbox, the fonts are assigned
ID numbers. They are as follows:

SystemFont (Chicago) = 0
ApplicationFont (Geneva) = 1
New York = 2
Geneva = 3
Monaco = 4
Venice = 5
London = 6
Athens = 7
San Francisco = 8
Toronto = 9

While in this list the application font is the same as Geneva, in some programs, a special applications
font is inserted in its place (the Seattle font in Multiplan, for example). For the digits in the readout
box in grDemo, then, the Geneva font was selected.

Next, the coordinates of the readout rectangle are calculated from the named input parameters. You
should be able to follow the Yerk math here, but in case you can't, the location of the readout box is
derived from the location of the scroll bar. By taking various coordinate points from the control's
rectangle, it is possible to define the readout rectangle as a box 4 bits wider on each side, starting
four bits below the bottom of the scroll bar, and extending 20 bits below the bottom of the scroll bar.
The coordinates are then stored (put:) in the control's rectangle ivar, readout. The rectangle is drawn
by the draw: readout message. Those same coordinates are fetched (get: readout) and fed to the
viewReadOut. From there, viewReadOut's coordinates are inset three pixels on a side.

While the first three methods of class VSCtl may be invoked repeatedly during program execution,
the NEW: method will be summoned only once for each scroll bar. But this is the method that fills
the scroll bar objects' ivars with enough values for them to become truly functional scroll bars.

Following the VSCtl class definition are three lines of code that create the objects that will become
the scroll bars. They are given the names VS1, VS2, and VS3, respectively. They have no real "life"
yet, because they need to receive a NEW: selector in a message. But these object-creation
statements make dictionary entries for these three objects.

Declaring Some Constants
Five values are created next. The first pair are the coordinate point on the full Mac screen of the top
left corner of the window that the program will occupy: coordinates 40,60. The next two are the
coordinates for the right bottom corner of the program window. These figures will be recalled later
when it comes time to create the window for the program.

The fifth value, vsLen, is the length of any scroll bar that will go inside that window. Notice that the
number placed in this value is derived from the top and bottom values of the program window. The
value was calculated in this way so that if we decide later to change the dimensions of the program
window (by changing the values of the window coordinates), the length of the scroll bars will be
adjusted accordingly. We won't have to hunt through the source code for all references to the scroll
bar length to effect the change throughout the program.

End of lesson 18

Lesson 19

Windows
Next we come to a class that defines a special kind of window: one that has controls in it and has an
area where graphics will be drawn.

The Macintosh Toolbox contains six predefined windows, each with a unique window definition ID
number. The six windows, their names, and their IDs are illustrated in Figure 1-19.

Figure 1-19

Whenever you define a new window, choose one of the window types by number. Yerk has
established three constants -- docWind, dlgwind, and rndWind -- that you can substitute in place of
the number, in case it's easier for you to remember names than numbers. The Yerk constant names
are shown in Figure 1-19. This Yerk demo graphics program also uses rndWind, but any window
style could have been selected.

Even plain windows are relatively complex objects inside the Macintosh Toolbox. To give you an
idea of their complexity, look at the long list of instance variables in the predefined class, Window.
Among the items you can control -- and sometimes must control -- in a window are:

• the kind of window (from an inventory of six)
• the rectangular area on the screen to enclose the window
• whether a window is growable
• the area on the screen within which a window can grow
• whether a window is draggable
• the area on the screen within which a window can be dragged
• how it is to respond to key-down and mouse-down events

The GrDemo Window
Class grWind, a subclass of CtlWind (itself a subclass of Window) lays the framework for the
window of this graphics demonstration. One additional ivar (over and above a standard window's
ivars and CtlWind's ivars) is the rectangle where the graphics will be drawn.

Let's jump to the CLASSINIT: method first, since this is executed the instant we create the window.
First of all, it summons the CLASSINIT: of the superclass, Class Window. This puts most of the
ivars in order for us. The remainder of the CLASSINIT: method defines the coordinate points of the
graphics window (thePane).

Giving the window enough parameters to present itself on the screen is simplified in this program in
the NEW: method, which is an extension of the NEW: method of Class Window. Fortunately, the
only parameters needed are the address and length of the title of the window. The other pieces -- the
address of the window's rectangular bounds, the type of window (rndWind), and flags for being
visible on the screen and having no close box -- are supplied within the method or as constants
already defined. Once all the factors are safely on the stack in the proper order, the method calls the
superclass' NEW: method. The NEW: method also establishes the area within which the grWind
object will be draggable. We wanted this to be done at run time, since 'grayRgn' calculates the
largest possible region your Mac has (due to different and multiple screens). If we had wanted to
limit the drag region to a fixed area, we could have defined this at compile time. If you have the
program running now, try dragging the window.

DRAW: is an important method, and one you should remember when you write programs that have
windows that need updating. Drag the grDemo window to the bottom of the screen so part of it runs
off the screen. Release the mouse button. Now drag it back near the center of the screen. For
everything in the window to be visible again requires updating. That's what DRAW: manages. The
object that receives a draw: message is set to be the current window. All three digital rectangles of
the scroll bars are redrawn. Between the BeginUpd and EndUpd Toolbox calls are messages that
redraw the scroll bars, confine the update region to the drawing rectangle, and execute the word
stored in the object's draw ivar. Clip: contrect restores the clip region to the entire program window.
Details about updates and clip regions can be found in the Quickdraw chapter of Inside Macintosh.

While this demo does not demonstrate it, another, faster way of updating a window is to draw to an

offscreen bitmap. There is an optional class called 'copier' that will allow you to do this. If you
would like to see how this works (after you play with the grdemo program a bit) redefine dstart to
not enter in the Begin Again loop. That way, after you execute dstart, the program will now start and
the fwind and interpreter will be available for interactive testing. Load the source 'offscreen' located
in folder 'My stuff'. Then type in the following lines:

copier bob
dwind destport: bob
4 15 320 220 destrect: bob
new: bob set: fwind

The messages to send to the object 'bob' are save: and draw:....try it to see how it works. You might
want to reset the destport to fwind, or just use the example in the 'offscreen' source. There is an
additional source called 'copywind' that creates a copier object to save the contents of a window
instance's content rect. Try the examples here...

The Demo Window
Returning to the grDemo, next comes the statement that creates the window, dwind, which is an
object of the class grWind we just defined. In the next line of code the title of the dwind window is
made a string constant labeled DTITLE.

The phrase Set: fWind causes graphics output to be sent to the fWind grafPort during compilation,
because it executes directly. This is so we can keep track of what is occurring during the load.

A new definition, @dParms, fetches the current readings of each control. This definition is a
shortcut that allows us to use one word to do the work of three messages for each of the four
following definitions.

The words of these four definitions should look familiar. The definitions are extensions of the spiral,
spin, lj, and dragon curves defined in Turtle. Here, however, they have been modified to fetch three
control parameters, place those numbers as ivars of the drawing device (the pen or poly, as the case
may be), and draw the graphics accordingly.

Because each of the drawing types has a different range of parameters, the !ranges definition lets us
set the maximum number for each control, depending on which graphics type we select from the
menu. The minimum values are always one.

NewObjs defines, in one word, an important and powerful series of operations that will take place at
the beginning of program execution. First, it closes the main yerk.com window (fwind). Then it
opens dwind with the title assigned to dTitle. And then it passes all necessary parameters to activate
each of the scroll bars. These parameters were detailed in the new: method of class VSctl, above.

In the next three lines of code, the text of the message that appears on the screen in response to the
"About Curves" menu items is assigned to three string constants, AB1, AB2, and AB3. Following
that come three program lines that define what is to happen when that selection is made. It selects
the system font (Chicago) in 12-point, positions the cursor at point 8,40, and "types" the three strings
on the screen.

Next, both the pen Bic and the polygon Anna are told where the center point of the graphics
rectangle is located. Importantly, the coordinates given are relative to the rectangle that defines the
bounds of the window. That's because if you were to drag the window to the lower left corner of the

screen, the pen and polygon must still find the center of the graphics rectangle. By measuring the
coordinates with respect to the window -- and not the entire Macintosh screen -- the Mac has no
problem finding the precise spot, no matter where on the screen you drag the window.

Scroll Bar Actions

The list of 5 definitions are the actions that occur when you click each part of each scroll bar. The
formats for each action handler definition is much like the other except for the amount of increment.
A key element of these definitions, however, is that they call upon a special Yerk construction, called
MyCtl.

MyCtl is what is known as a vector. MyCtl essentially tracks the address of the most recently
activated control. Therefore, if you click the PageUp part of the second of our three scroll bars,
MyCtl remembers that it was the second scroll bar you activated. In the action handler definition,
then, get: MyCtl fetches the previous value of the second scroll bar. The object of the get: method is
determined dynamically at runtime, a technique explained in Part II as late-binding. After the value
of the second scroll bar is decremented by 10, a put: MyCtl stores the value in the second scroll bar's
ivar before sending the update message to the window. The importance of this myCtl mechanism is
that is eliminates the need for us to define five action handlers for each scroll bar or concocting some
algorithm to keep all that code to a minimum. MyCtl allows us full control flexibility with a
minimum of code.

The doThumb definition is a special one that is coupled to a toolkit call that automatically calculates
a value based on the relative position of the thumb along the range of the scroll bar. After that, it
updates the window. The doPgUp and doPgDn increment and decrement (respectively) the value of
the scroll bar by 10. And the doLnUp and doLnDn adjust the figure by one in their respective
directions.

In the line after the action handler definitions, the address of the lj definition (the one that draws
Lissajous figures) is plugged into dwind as the type of graphic that gets drawn when grDemo first
fires up. The notation 'c ("tick c") returns the address (specifically, the cfa) of the word that follow
it. In this case, the cfa of lj, which was defined a bit earlier in this program, is passed as a parameter
in the setdraw: dwind message. Checking at dwind's class definition, we find that the setdraw:
method stores the cfa of a graphics routine (lj, spin, etc.) in the draw ivar of dwind. This will all
come together at the end of the program.

Next, the cfas of the five control actions are stored in each scroll bar's actions ivars. The syntax
here, 5 'cfas ("five tick cfas") is a shortcut for entering 'cs for each action handler word. Addresses
for each definition are passed as parameters to the scroll bars' actions ivars.

Menus
Older versions of Yerk created menus from an external text file which you created with an Editor.
However, the current version no longer supports this method; instead menus are defined in a
resource file.

Menus work in ways analogous to controls in that the program contains definitions of menu handler
words, which the menu selections invoke. Menu selections are usually more powerful in a Mac
program than controls, because menus typically divert the program into a relatively drastic change in
program mode. In a typical File menu, for example, selecting the Load... option halts the main
program, while the user's attention is shifted to the dialog box for the selection of a file to open. In

grDemo, the primary menu, Graphics, changes the type of graphics the program will draw, sending
you from Lissajous mode to Dragon Curves mode, for example.

GrDemo's menu text is created by a resource editor such as Apple's ResEdit. The menus reside in a
resource file called demo.rsrc and have an ID number associated with them. By convention, the
Apple menu is ID=1. We've assigned ID=128 to GrafMen. These id's match the assignments in the
grdemo source. The Apple menu is loaded with its handlers in the

grdemo source at compile time. Only two need be loaded; the desk accessories will be loaded
automatically because of the way class Applemenu is defined. Notice that the program instantiates
only Grafmen, since Applemen is part of the Yerk itself.

The first selection will execute the word 'about'. The second selection is the dividing line between
About Curves and the balance of the items in the menu which does nothing, so a null is the
appropriate handler. This menu item is not meant to be active.

Selections for the Grafmen menu are rather straightforward. "Graphics" is the heading that will
appear on the menu bar. Then there are four menu handler words that we'll define in grDemo in a
moment. To Quit the program, the menu handler word is sayonara which will be defined in the
demo as the plain ol' Yerk word, bye, which returns you to the desktop.

Next come the menu handler word definitions for Grafmen. Each one checks the appropriate menu
item making use of the globals mitem and theMenu...these are set automatically when you select a
menu item. You could have hard-coded the item numbers and GrafMen instead, but this method
illustrates the convenience and power of using a late bound object (theMenu). Each handler then
places the cfa of the drawing word in the draw ivar of dwind and also places the maximum control
values for each type of drawing. Then it sends an update message for the entire window, which
draws the revised scroll bar values and the drawing for the current settings.

SetReps is a word that establishes the maximum number of repetitions for drawings created using
the pen bic and the polygon anna. You may wish to increase the value for bic if you find your
numeric selections on the scroll bars don't draw complete figures. Conversely, some drawings may
repeat on themselves after only 100 or fewer repetitions, in which case it seems that the program is
unresponsive for several seconds.

The word that brings the menus to life is 'getGRMenu'. It lists the menus you want to load, the total
number of the menus, and then sends the init: message to the latebound menubar object. The
resource file must have been opened prior to the call.

Running the Program
The last definition of this program is that of a word that gets the whole program running. This is
where everything done so far comes together when you type the word, dstart. The odd-looking
coordinates (1000,20) are indeed out of the range of the Mac's visible screen. Newobjs, as defined
earlier, brings the dwind and VS objects to life. Bic and Anna are centered in the graphics rectangle,
their respective maximum repetitions are set, ranges are set for the first pen action, the first figure is
drawn (update:), and the cursor is turned off. At the end, the BEGIN...AGAIN loop effectively
disables the keyboard, since any key entry is immediately dropped from the stack. The program
essentially loops here indefinitely, yet it is always "listening" to mouse events as they affect controls
and menus.

If you want the program to start up right away after loading, all you have to do is enter the startup
word, dstart, as the last word of the grDemo source file. When the file is loaded, Yerk will act on
that startup word as if you had typed it at the Yerk prompt.

In Summary
Now that you have seen the entire grDemo program, you should notice some key points about Yerk
programs. First come the definition of the classes of objects that appear on the screen. The balance
of the program concerns itself with defining handler words that work their wonders when controls
and menus are activated by the mouse. It is wise to think of your program action in terms of handler
words. And lastly comes the definition of the word that

starts your program. it calls the words you've defined in the dictionary to create objects and let the
program respond to your input.

If you write a program that you want to "seal off" as a self-running program, see Chapter 5, of Part
II, for details on how to Install a Yerk application.

Where To Go From Here
You've already had quite an exposure to Yerk and object oriented programming. You've seen how
Yerk interacts with the Macintosh Toolbox to simplify the way your programs communicate with the
Mac. Now, it's time for you to start experimenting with programs of your own. Several chapters in
Part II should point you in the right direction with details of the finer points of Yerk programming on
the Macintosh.

It is important that you have an acquaintance with the powers of the predefined classes and the
words in the Yerk dictionary. While there is more to it than a casual reading will ever reveal, you
should spend some time studying the methods of the predefined classes as detailed in Part III of this
manual to discover what building blocks are available to you. You should also browse through the
Yerk Index and Glossary in Part IV, where you'll likely discover many built-in words that give you
ideas about the operations you can specify for methods.

A vast amount of reference material is available in this manual and on the disks. The best way to
make use of it all is to start defining some classes on your own and experiment sending messages to
the objects you create. Just as with a spoken language, the more you practice with Yerk the faster
you'll be comfortable with it.

